1
|
Molecular Physiology of Anaerobic Phototrophic Purple and Green Sulfur Bacteria. Int J Mol Sci 2021; 22:ijms22126398. [PMID: 34203823 PMCID: PMC8232776 DOI: 10.3390/ijms22126398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/24/2021] [Accepted: 06/11/2021] [Indexed: 12/04/2022] Open
Abstract
There are two main types of bacterial photosynthesis: oxygenic (cyanobacteria) and anoxygenic (sulfur and non-sulfur phototrophs). Molecular mechanisms of photosynthesis in the phototrophic microorganisms can differ and depend on their location and pigments in the cells. This paper describes bacteria capable of molecular oxidizing hydrogen sulfide, specifically the families Chromatiaceae and Chlorobiaceae, also known as purple and green sulfur bacteria in the process of anoxygenic photosynthesis. Further, it analyzes certain important physiological processes, especially those which are characteristic for these bacterial families. Primarily, the molecular metabolism of sulfur, which oxidizes hydrogen sulfide to elementary molecular sulfur, as well as photosynthetic processes taking place inside of cells are presented. Particular attention is paid to the description of the molecular structure of the photosynthetic apparatus in these two families of phototrophs. Moreover, some of their molecular biotechnological perspectives are discussed.
Collapse
|
2
|
Razjivin A, Götze J, Lukashev E, Kozlovsky V, Ashikhmin A, Makhneva Z, Moskalenko A, Lokstein H, Paschenko V. Lack of Excitation Energy Transfer from the Bacteriochlorophyll Soret Band to Carotenoids in Photosynthetic Complexes of Purple Bacteria. J Phys Chem B 2021; 125:3538-3545. [PMID: 33818091 DOI: 10.1021/acs.jpcb.1c00719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The excitation energy transfer (EET) from the bacteriochlorophyll (BChl) Soret band to the second excited state(s) (S2) of carotenoids in pigment-protein complexes of purple bacteria was investigated. The efficiency of EET was determined, based on fluorescence excitation and absorption spectra of chromatophores, peripheral light-harvesting complexes (LH2), core complexes (LH1-RC), and pigments in solution. Carotenoid-containing and carotenoid-less samples were compared: LH1-RC and LH2 from Allochromatium minutissimum, Ectothiorhodospira haloalkaliphila, and chromatophores from Rhodobacter sphaeroides and Rhodospirillum rubrum wild type and carotenoid-free strains R-26 and G9. BChl-to-carotenoid EET was absent, or its efficiency was less than the accuracy of the measurements of ∼5%. Quantum chemical calculations support the experimental results: The transition dipole moments of spatially close carotenoid/BChl pairs were found to be nearly orthogonal. The structural arrangements suggest that Soret EET may be lacking for the studied systems, however, EET from carotenoids to Qx appears to be possible.
Collapse
Affiliation(s)
- Andrei Razjivin
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Jan Götze
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Evgeny Lukashev
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir Kozlovsky
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Aleksandr Ashikhmin
- Institute of Basic Biological Problems of Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences", 142290, Pushchino, Russia
| | - Zoya Makhneva
- Institute of Basic Biological Problems of Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences", 142290, Pushchino, Russia
| | - Andrey Moskalenko
- Institute of Basic Biological Problems of Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences", 142290, Pushchino, Russia
| | - Heiko Lokstein
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | - Vladimir Paschenko
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Razjivin AP, Lukashev EP, Kompanets VO, Kozlovsky VS, Ashikhmin AA, Chekalin SV, Moskalenko AA, Paschenko VZ. Excitation energy transfer from the bacteriochlorophyll Soret band to carotenoids in the LH2 light-harvesting complex from Ectothiorhodospira haloalkaliphila is negligible. PHOTOSYNTHESIS RESEARCH 2017; 133:289-295. [PMID: 28205063 DOI: 10.1007/s11120-017-0341-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
Pathways of intramolecular conversion and intermolecular electronic excitation energy transfer (EET) in the photosynthetic apparatus of purple bacteria remain subject to debate. Here we experimentally tested the possibility of EET from the bacteriochlorophyll (BChl) Soret band to the singlet S2 level of carotenoids using femtosecond pump-probe measurements and steady-state fluorescence excitation and absorption measurements in the near-ultraviolet and visible spectral ranges. The efficiency of EET from the Soret band of BChl to S2 of the carotenoids in light-harvesting complex LH2 from the purple bacterium Ectothiorhodospira haloalkaliphila appeared not to exceed a few percent.
Collapse
Affiliation(s)
- A P Razjivin
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991.
| | - E P Lukashev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - V O Kompanets
- Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russia, 142190
| | - V S Kozlovsky
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - A A Ashikhmin
- Institute of Fundamental Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - S V Chekalin
- Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russia, 142190
| | - A A Moskalenko
- Institute of Fundamental Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - V Z Paschenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| |
Collapse
|
4
|
Light harvesting in phototrophic bacteria: structure and function. Biochem J 2017; 474:2107-2131. [DOI: 10.1042/bcj20160753] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/23/2022]
Abstract
This review serves as an introduction to the variety of light-harvesting (LH) structures present in phototrophic prokaryotes. It provides an overview of the LH complexes of purple bacteria, green sulfur bacteria (GSB), acidobacteria, filamentous anoxygenic phototrophs (FAP), and cyanobacteria. Bacteria have adapted their LH systems for efficient operation under a multitude of different habitats and light qualities, performing both oxygenic (oxygen-evolving) and anoxygenic (non-oxygen-evolving) photosynthesis. For each LH system, emphasis is placed on the overall architecture of the pigment–protein complex, as well as any relevant information on energy transfer rates and pathways. This review addresses also some of the more recent findings in the field, such as the structure of the CsmA chlorosome baseplate and the whole-cell kinetics of energy transfer in GSB, while also pointing out some areas in need of further investigation.
Collapse
|
5
|
Ashikhmin A, Makhneva Z, Bolshakov M, Moskalenko A. Incorporation of spheroidene and spheroidenone into light-harvesting complexes from purple sulfur bacteria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:99-107. [DOI: 10.1016/j.jphotobiol.2017.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/08/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
|