1
|
Kupriyanova EV, Pronina NA, Los DA. Adapting from Low to High: An Update to CO 2-Concentrating Mechanisms of Cyanobacteria and Microalgae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1569. [PMID: 37050194 PMCID: PMC10096703 DOI: 10.3390/plants12071569] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The intracellular accumulation of inorganic carbon (Ci) by microalgae and cyanobacteria under ambient atmospheric CO2 levels was first documented in the 80s of the 20th Century. Hence, a third variety of the CO2-concentrating mechanism (CCM), acting in aquatic photoautotrophs with the C3 photosynthetic pathway, was revealed in addition to the then-known schemes of CCM, functioning in CAM and C4 higher plants. Despite the low affinity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) of microalgae and cyanobacteria for the CO2 substrate and low CO2/O2 specificity, CCM allows them to perform efficient CO2 fixation in the reductive pentose phosphate (RPP) cycle. CCM is based on the coordinated operation of strategically located carbonic anhydrases and CO2/HCO3- uptake systems. This cooperation enables the intracellular accumulation of HCO3-, which is then employed to generate a high concentration of CO2 molecules in the vicinity of Rubisco's active centers compensating up for the shortcomings of enzyme features. CCM functions as an add-on to the RPP cycle while also acting as an important regulatory link in the interaction of dark and light reactions of photosynthesis. This review summarizes recent advances in the study of CCM molecular and cellular organization in microalgae and cyanobacteria, as well as the fundamental principles of its functioning and regulation.
Collapse
|
2
|
Complete Genome Sequence of Phormidium yuhuli AB48, Isolated from an Industrial Photobioreactor Environment. Microbiol Resour Announc 2023; 12:e0075922. [PMID: 36625650 PMCID: PMC9933718 DOI: 10.1128/mra.00759-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We report the genome of Phormidium yuhuli AB48, which includes a circular chromosome and a circular plasmid (4,747,469 bp and 51,599 bp, respectively). This is currently the only closed reference genome of an isolate of the Phormidium genus, based on the Genome Taxonomy Database (GTDB), providing a potential model system for sustainable biotechnology innovation.
Collapse
|
3
|
Minagawa J, Dann M. Extracellular CahB1 from Sodalinema gerasimenkoae IPPAS B-353 Acts as a Functional Carboxysomal β-Carbonic Anhydrase in Synechocystis sp. PCC6803. PLANTS (BASEL, SWITZERLAND) 2023; 12:265. [PMID: 36678979 PMCID: PMC9865033 DOI: 10.3390/plants12020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Cyanobacteria mostly rely on the active uptake of hydrated CO2 (i.e., bicarbonate ions) from the surrounding media to fuel their inorganic carbon assimilation. The dehydration of bicarbonate in close vicinity of RuBisCO is achieved through the activity of carboxysomal carbonic anhydrase (CA) enzymes. Simultaneously, many cyanobacterial genomes encode extracellular α- and β-class CAs (EcaA, EcaB) whose exact physiological role remains largely unknown. To date, the CahB1 enzyme of Sodalinema gerasimenkoae (formerly Microcoleus/Coleofasciculus chthonoplastes) remains the sole described active extracellular β-CA in cyanobacteria, but its molecular features strongly suggest it to be a carboxysomal rather than a secreted protein. Upon expression of CahB1 in Synechocystis sp. PCC6803, we found that its expression complemented the loss of endogenous CcaA. Moreover, CahB1 was found to localize to a carboxysome-harboring and CA-active cell fraction. Our data suggest that CahB1 retains all crucial properties of a cellular carboxysomal CA and that the secretion mechanism and/or the machinations of the Sodalinema gerasimenkoae carboxysome are different from those of Synechocystis.
Collapse
Affiliation(s)
- Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology (NIBB), Aichi, Okazaki 444-8585, Japan
| | - Marcel Dann
- Division of Environmental Photobiology, National Institute for Basic Biology (NIBB), Aichi, Okazaki 444-8585, Japan
- Plant Molecular Biology, Ludwig-Maximilian University (LMU) Munich, 82152 Planegg, Germany
| |
Collapse
|
4
|
Koch M, Noonan AJC, Qiu Y, Dofher K, Kieft B, Mottahedeh S, Shastri M, Hallam SJ. The survivor strain: isolation and characterization of Phormidium yuhuli AB48, a filamentous phototactic cyanobacterium with biotechnological potential. Front Bioeng Biotechnol 2022; 10:932695. [PMID: 36046667 PMCID: PMC9420970 DOI: 10.3389/fbioe.2022.932695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Despite their recognized potential, current applications of cyanobacteria as microbial cell factories remain in early stages of development. This is partly due to the fact that engineered strains are often difficult to grow at scale. This technical challenge contrasts with the dense and highly productive cyanobacteria populations thriving in many natural environments. It has been proposed that the selection of strains pre-adapted for growth in industrial photobioreactors could enable more productive cultivation outcomes. Here, we described the initial morphological, physiological, and genomic characterization of Phormidium yuhuli AB48 isolated from an industrial photobioreactor environment. P. yuhuli AB48 is a filamentous phototactic cyanobacterium with a growth rate comparable to Synechocystis sp. PCC 6803. The isolate forms dense biofilms under high salinity and alkaline conditions and manifests a similar nutrient profile to Arthrospira platensis (Spirulina). We sequenced, assembled, and analyzed the P. yuhuli AB48 genome, the first closed circular isolate reference genome for a member of the Phormidium genus. We then used cultivation experiments in combination with proteomics and metabolomics to investigate growth characteristics and phenotypes related to industrial scale cultivation, including nitrogen and carbon utilization, salinity, and pH acclimation, as well as antibiotic resistance. These analyses provide insight into the biological mechanisms behind the desirable growth properties manifested by P. yuhuli AB48 and position it as a promising microbial cell factory for industrial-scale bioproduction[221, 1631].
Collapse
Affiliation(s)
- Moritz Koch
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Avery J. C. Noonan
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, Canada
| | - Yilin Qiu
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
| | - Kalen Dofher
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
| | - Brandon Kieft
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Steven J. Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Steven J. Hallam,
| |
Collapse
|
5
|
Tang J, Zhou H, Yao D, Riaz S, You D, Klepacz-Smółka A, Daroch M. Comparative Genomic Analysis Revealed Distinct Molecular Components and Organization of CO 2-Concentrating Mechanism in Thermophilic Cyanobacteria. Front Microbiol 2022; 13:876272. [PMID: 35602029 PMCID: PMC9120777 DOI: 10.3389/fmicb.2022.876272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022] Open
Abstract
Cyanobacteria evolved an inorganic carbon-concentrating mechanism (CCM) to perform effective oxygenic photosynthesis and prevent photorespiratory carbon losses. This process facilitates the acclimation of cyanobacteria to various habitats, particularly in CO2-limited environments. To date, there is limited information on the CCM of thermophilic cyanobacteria whose habitats limit the solubility of inorganic carbon. Here, genome-based approaches were used to identify the molecular components of CCM in 17 well-described thermophilic cyanobacteria. These cyanobacteria were from the genus Leptodesmis, Leptolyngbya, Leptothermofonsia, Thermoleptolyngbya, Thermostichus, and Thermosynechococcus. All the strains belong to β-cyanobacteria based on their β-carboxysome shell proteins with 1B form of Rubisco. The diversity in the Ci uptake systems and carboxysome composition of these thermophiles were analyzed based on their genomic information. For Ci uptake systems, two CO2 uptake systems (NDH-13 and NDH-14) and BicA for HCO3– transport were present in all the thermophilic cyanobacteria, while most strains did not have the Na+/HCO3– Sbt symporter and HCO3– transporter BCT1 were absent in four strains. As for carboxysome, the β-carboxysomal shell protein, ccmK2, was absent only in Thermoleptolyngbya strains, whereas ccmK3/K4 were absent in all Thermostichus and Thermosynechococcus strains. Besides, all Thermostichus and Thermosynechococcus strains lacked carboxysomal β-CA, ccaA, the carbonic anhydrase activity of which may be replaced by ccmM proteins as indicated by comparative domain analysis. The genomic distribution of CCM-related genes was different among the thermophiles, suggesting probably distinct expression regulation. Overall, the comparative genomic analysis revealed distinct molecular components and organization of CCM in thermophilic cyanobacteria. These findings provided insights into the CCM components of thermophilic cyanobacteria and fundamental knowledge for further research regarding photosynthetic improvement and biomass yield of thermophilic cyanobacteria with biotechnological potentials.
Collapse
Affiliation(s)
- Jie Tang
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Huizhen Zhou
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Dan Yao
- School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Sadaf Riaz
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Dawei You
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Anna Klepacz-Smółka
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Łódź University of Technology, Łódź, Poland
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
6
|
Ataeian M, Vadlamani A, Haines M, Mosier D, Dong X, Kleiner M, Strous M, Hawley AK. Proteome and strain analysis of cyanobacterium Candidatus "Phormidium alkaliphilum" reveals traits for success in biotechnology. iScience 2021; 24:103405. [PMID: 34877483 PMCID: PMC8633866 DOI: 10.1016/j.isci.2021.103405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/27/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteria encompass a diverse group of photoautotrophic bacteria with important roles in nature and biotechnology. Here we characterized Candidatus “Phormidium alkaliphilum,” an abundant member in alkaline soda lake microbial communities globally. The complete, circular whole-genome sequence of Ca. “P. alkaliphilum” was obtained using combined Nanopore and Illumina sequencing of a Ca. “P. alkaliphilum” consortium. Strain-level diversity of Ca. “P. alkaliphilum” was shown to contribute to photobioreactor robustness under different operational conditions. Comparative genomics of closely related species showed that adaptation to high pH was not attributed to specific genes. Proteomics at high and low pH showed only minimal changes in gene expression, but higher productivity in high pH. Diverse photosystem antennae proteins, and high-affinity terminal oxidase, compared with other soda lake cyanobacteria, appear to contribute to the success of Ca. “P. alkaliphilum” in photobioreactors and biotechnology applications. Closed genome of the cyanobacteria Ca. P. alkaliphilum from high-pH photobioreactor Genetic factors lead this Phormidium to outcompete other cyanobacteria in photobioreactor Adaptation to high pH and alkalinity is not linked to specific genes Strain-level diversity contributes Ca. P. alkaliphilum success in changing conditions
Collapse
Affiliation(s)
- Maryam Ataeian
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | | | - Marianne Haines
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Damon Mosier
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Xiaoli Dong
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Alyse K. Hawley
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
- School of Engineering, University of British Columbia Okanagan, Kelowna, BC, Canada
- Corresponding author
| |
Collapse
|
7
|
Kupriyanova EV, Sinetova MA, Mironov KS, Novikova GV, Dykman LA, Rodionova MV, Gabrielyan DA, Los DA. Highly active extracellular α-class carbonic anhydrase of Cyanothece sp. ATCC 51142. Biochimie 2019; 160:200-209. [DOI: 10.1016/j.biochi.2019.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/15/2019] [Indexed: 12/31/2022]
|
8
|
Namsaraev ZB, Kolganova TV, Patutina EO, Tsyrenova DD, Samylina OS. Cyanobacterial Diversity in the Alkaline Lake Khilganta during the Dry and Wet Periods. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718040136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Kupriyanova EV, Sinetova MA, Bedbenov VS, Pronina NA, Los DA. Putative extracellular α-class carbonic anhydrase, EcaA, of Synechococcus elongatus PCC 7942 is an active enzyme: a sequel to an old story. MICROBIOLOGY-SGM 2018; 164:576-586. [PMID: 29485398 DOI: 10.1099/mic.0.000634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Carbonic anhydrase (CA) EcaA of Synechococcus elongatus PCC 7942 was previously characterized as a putative extracellular α-class CA, however, its activity was never verified. Here we show that EcaA possesses specific CA activity, which is inhibited by ethoxyzolamide. An active EcaA was expressed in heterologous bacterial system, which supports the formation of disulfide bonds, as a full-length protein (EcaA+L) and as a mature protein that lacks a leader peptide (EcaA-L). EcaA-L exhibited higher specific activity compared to EcaA+L. The recombinant EcaA, expressed in a bacterial system that does not support optimal disulfide bond formation, exhibited extremely low activity. This activity, however, could be enhanced by the thiol-oxidizing agent, diamide; while a disulfide bond-reducing agent, dithiothreitol, further inactivated the enzyme. Intact E. coli cells that overexpress EcaA+L possess a small amount of processed protein, EcaA-L, whereas the bulk of the full-length protein resides in the cytosol. This may indicate poor recognition of the EcaA leader peptide by protein export systems. S. elongatus possessed a relatively low level of ecaA mRNA, which varied insignificantly in response to changes in CO2 supply. However, the presence of protein in the cells is not obvious. This points to the physiological insignificance of EcaA in S. elongatus, at least under the applied experimental conditions.
Collapse
Affiliation(s)
- Elena V Kupriyanova
- Laboratory of Cell Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, Moscow 127276, Russia
| | - Maria A Sinetova
- Laboratory of Cell Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, Moscow 127276, Russia
| | - Vladimir S Bedbenov
- Laboratory of Cell Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, Moscow 127276, Russia
| | - Natalia A Pronina
- Laboratory of Cell Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, Moscow 127276, Russia
| | - Dmitry A Los
- Laboratory of Cell Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, Moscow 127276, Russia
| |
Collapse
|
10
|
Klanchui A, Cheevadhanarak S, Prommeenate P, Meechai A. Exploring Components of the CO 2-Concentrating Mechanism in Alkaliphilic Cyanobacteria Through Genome-Based Analysis. Comput Struct Biotechnol J 2017; 15:340-350. [PMID: 28652895 PMCID: PMC5472144 DOI: 10.1016/j.csbj.2017.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/21/2017] [Accepted: 05/11/2017] [Indexed: 11/23/2022] Open
Abstract
In cyanobacteria, the CO2-concentrating mechanism (CCM) is a vital biological process that provides effective photosynthetic CO2 fixation by elevating the CO2 level near the active site of Rubisco. This process enables the adaptation of cyanobacteria to various habitats, particularly in CO2-limited environments. Although CCM of freshwater and marine cyanobacteria are well studied, there is limited information on the CCM of cyanobacteria living under alkaline environments. Here, we aimed to explore the molecular components of CCM in 12 alkaliphilic cyanobacteria through genome-based analysis. These cyanobacteria included 6 moderate alkaliphiles; Pleurocapsa sp. PCC 7327, Synechococcus spp., Cyanobacterium spp., Spirulina subsalsa PCC 9445, and 6 strong alkaliphiles (i.e. Arthrospira spp.). The results showed that both groups belong to β-cyanobacteria based on β-carboxysome shell proteins with form 1B of Rubisco. They also contained standard genes, ccmKLMNO cluster, which is essential for β-carboxysome formation. Most strains did not have the high-affinity Na+/HCO3- symporter SbtA and the medium-affinity ATP-dependent HCO3- transporter BCT1. Specifically, all strong alkaliphiles appeared to lack BCT1. Beside the transport systems, carboxysomal β-CA, CcaA, was absent in all alkaliphiles, except for three moderate alkaliphiles: Pleurocapsa sp. PCC 7327, Cyanobacteriumstranieri PCC 7202, and Spirulina subsalsa PCC 9445. Furthermore, comparative analysis of the CCM components among freshwater, marine, and alkaliphilic β-cyanobacteria revealed that the basic molecular components of the CCM in the alkaliphilic cyanobacteria seemed to share more degrees of similarity with freshwater than marine cyanobacteria. These findings provide a relationship between the CCM components of cyanobacteria and their habitats.
Collapse
Affiliation(s)
- Amornpan Klanchui
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Supapon Cheevadhanarak
- Division of Biotechnology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Peerada Prommeenate
- Biochemical Engineering and Pilot Plant Research and Development (BEC) Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Asawin Meechai
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| |
Collapse
|