1
|
Mathis P, Sage E, Byrdin M. Pushing the limits of flash photolysis to unravel the secrets of biological electron and proton transfer. Photochem Photobiol Sci 2022; 21:1533-1544. [DOI: 10.1007/s43630-021-00134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 11/25/2022]
|
2
|
Dubas K, Szewczyk S, Białek R, Burdziński G, Jones MR, Gibasiewicz K. Antagonistic Effects of Point Mutations on Charge Recombination and a New View of Primary Charge Separation in Photosynthetic Proteins. J Phys Chem B 2021; 125:8742-8756. [PMID: 34328746 PMCID: PMC8389993 DOI: 10.1021/acs.jpcb.1c03978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Light-induced electron-transfer
reactions were investigated in
wild-type and three mutant Rhodobacter sphaeroides reaction centers with the secondary electron acceptor (ubiquinone
QA) either removed or permanently reduced. Under such conditions,
charge separation between the primary electron donor (bacteriochlorophyll
dimer, P) and the electron acceptor (bacteriopheophytin, HA) was followed by P+HA– →
PHA charge recombination. Two reaction centers were used
that had different single amino-acid mutations that brought about
either a 3-fold acceleration in charge recombination compared to that
in the wild-type protein, or a 3-fold deceleration. In a third mutant
in which the two single amino-acid mutations were combined, charge
recombination was similar to that in the wild type. In all cases,
data from transient absorption measurements were analyzed using similar
models. The modeling included the energetic relaxation of the charge-separated
states caused by protein dynamics and evidenced the appearance of
an intermediate charge-separated state, P+BA–, with BA being the bacteriochlorophyll
located between P and HA. In all cases, mixing of the states
P+BA– and P+HA– was observed and explained in terms of
electron delocalization over BA and HA. This
delocalization, together with picosecond protein relaxation, underlies
a new view of primary charge separation in photosynthesis.
Collapse
Affiliation(s)
- K Dubas
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 2, 61-614 Poznań, Poland.,Department of Optometry, Poznan University of Medical Sciences, ul. Rokietnicka 5d, 60-806 Poznań, Poland
| | - S Szewczyk
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 2, 61-614 Poznań, Poland
| | - R Białek
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 2, 61-614 Poznań, Poland
| | - G Burdziński
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 2, 61-614 Poznań, Poland
| | - M R Jones
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, U.K
| | - K Gibasiewicz
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 2, 61-614 Poznań, Poland
| |
Collapse
|
3
|
Gibasiewicz K, Pajzderska M, Białek R, Jones MR. Temperature dependence of nanosecond charge recombination in mutant Rhodobacter sphaeroides reaction centers: modelling of the protein dynamics. Photochem Photobiol Sci 2021; 20:913-922. [PMID: 34213754 DOI: 10.1007/s43630-021-00069-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/18/2021] [Indexed: 10/20/2022]
Abstract
We investigated the influence of a range of factors-temperature, redox midpoint potential of an electron carrier, and protein dynamics-on nanosecond electron transfer within a protein. The model reaction was back electron transfer from a bacteriopheophytin anion, HA-, to an oxidized primary electron donor, P+, in a wild type Rhodobacter sphaeroides reaction center (RC) with a permanently reduced secondary electron acceptor (quinone, QA-). Also used were two modified RCs with single amino acid mutations near the monomeric bacteriochlorophyll, BA, located between P and HA. Both mutant RCs showed significant slowing down of this back electron transfer reaction with decreasing temperature, similar to that observed with the wild type RC, but contrasting with a number of single point mutant RCs studied previously. The observed similarities and differences are explained in the framework of a (P+BA- ↔ P+HA-) equilibrium model with an important role played by protein relaxation. The major cause of the observed temperature dependence, both in the wild type RC and in the mutant proteins, is a limitation in access to the thermally activated pathway of charge recombination via the state P+BA- at low temperatures. The data indicate that in all RCs both charge recombination pathways, the thermally activated one and a direct one without involvement of the P+BA- state, are controlled by the protein dynamics. It is concluded that the modifications of the protein environment affect the overall back electron transfer kinetics primarily by changing the redox potential of BA and not by changing the protein relaxation dynamics.
Collapse
Affiliation(s)
- Krzysztof Gibasiewicz
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland.
| | - Maria Pajzderska
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Rafał Białek
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Michael R Jones
- School of Biochemistry, University of Bristol, Medical Sciences BuildingUniversity Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
4
|
Białek R, Thakur K, Ruff A, Jones MR, Schuhmann W, Ramanan C, Gibasiewicz K. Insight into Electron Transfer from a Redox Polymer to a Photoactive Protein. J Phys Chem B 2020; 124:11123-11132. [PMID: 33236901 PMCID: PMC7735723 DOI: 10.1021/acs.jpcb.0c08714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/10/2020] [Indexed: 11/29/2022]
Abstract
Biohybrid photoelectrochemical systems in photovoltaic or biosensor applications have gained considerable attention in recent years. While the photoactive proteins engaged in such systems usually maintain an internal charge separation quantum yield of nearly 100%, the subsequent steps of electron and hole transfer beyond the protein often limit the overall system efficiency and their kinetics remain largely uncharacterized. To reveal the dynamics of one of such charge-transfer reactions, we report on the reduction of Rhodobacter sphaeroides reaction centers (RCs) by Os-complex-modified redox polymers (P-Os) characterized using transient absorption spectroscopy. RCs and P-Os were mixed in buffered solution in different molar ratios in the presence of a water-soluble quinone as an electron acceptor. Electron transfer from P-Os to the photoexcited RCs could be described by a three-exponential function, the fastest lifetime of which was on the order of a few microseconds, which is a few orders of magnitude faster than the internal charge recombination of RCs with fully separated charge. This was similar to the lifetime for the reduction of RCs by their natural electron donor, cytochrome c2. The rate of electron donation increased with increasing ratio of polymer to protein concentrations. It is proposed that P-Os and RCs engage in electrostatic interactions to form complexes, the sizes of which depend on the polymer-to-protein ratio. Our findings throw light on the processes within hydrogel-based biophotovoltaic devices and will inform the future design of materials optimally suited for this application.
Collapse
Affiliation(s)
- Rafał Białek
- Faculty
of Physics, Adam Mickiewicz University, Poznań, ul. Uniwersytetu
Poznańskiego 2, 61-614 Poznań, Poland
| | - Kalyani Thakur
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Adrian Ruff
- Analytical
Chemistry—Center for Electrochemical Sciences, Faculty of Biochemistry
and Chemistry, Faculty of Biochemistry and Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | - Michael R. Jones
- School
of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, U.K.
| | - Wolfgang Schuhmann
- Analytical
Chemistry—Center for Electrochemical Sciences, Faculty of Biochemistry
and Chemistry, Faculty of Biochemistry and Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | - Charusheela Ramanan
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Krzysztof Gibasiewicz
- Faculty
of Physics, Adam Mickiewicz University, Poznań, ul. Uniwersytetu
Poznańskiego 2, 61-614 Poznań, Poland
| |
Collapse
|
5
|
Khristin AM, Zabelin AA, Fufina TY, Khatypov RA, Proskuryakov II, Shuvalov VA, Shkuropatov AY, Vasilieva LG. Mutation H(M202)L does not lead to the formation of a heterodimer of the primary electron donor in reaction centers of Rhodobacter sphaeroides when combined with mutation I(M206)H. PHOTOSYNTHESIS RESEARCH 2020; 146:109-121. [PMID: 32125564 DOI: 10.1007/s11120-020-00728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
In photosynthetic reaction centers (RCs) of purple bacteria, conserved histidine residues [His L173 and His M202 in Rhodobacter (Rba.) sphaeroides] are known to serve as fifth axial ligands to the central Mg atom of the bacteriochlorophyll (BChl) molecules (PA and PB, respectively) that constitute the homodimer (BChl/BChl) primary electron donor P. In a number of previous studies, it has been found that replacing these residues with leucine, which cannot serve as a ligand to the Mg ion of BChl, leads to the assembly of heterodimer RCs with P represented by the BChl/BPheo pair. Here, we show that a homodimer P is assembled in Rba. sphaeroides RCs if the mutation H(M202)L is combined with the mutation of isoleucine to histidine at position M206 located in the immediate vicinity of PB. The resulting mutant H(M202)L/I(M206)H RCs are characterized using pigment analysis, redox titration, and a number of spectroscopic methods. It is shown that, compared to wild-type RCs, the double mutation causes significant changes in the absorption spectrum of the P homodimer and the electronic structure of the radical cation P+, but has only minor effect on the pigment composition, the P/P+ midpoint potential, and the initial electron-transfer reaction. The results are discussed in terms of the nature of the axial ligand to the Mg of PB in mutant H(M202)L/I(M206)H RCs and the possibility of His M202 participation in the previously proposed through-bond route for electron transfer from the excited state P* to the monomeric BChl BA in wild-type RCs.
Collapse
Affiliation(s)
- Anton M Khristin
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290, Moscow, Russian Federation
| | - Alexey A Zabelin
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290, Moscow, Russian Federation
| | - Tatiana Yu Fufina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290, Moscow, Russian Federation
| | - Ravil A Khatypov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290, Moscow, Russian Federation
| | - Ivan I Proskuryakov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290, Moscow, Russian Federation
| | - Vladimir A Shuvalov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290, Moscow, Russian Federation
| | - Anatoly Ya Shkuropatov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290, Moscow, Russian Federation
| | - Lyudmila G Vasilieva
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290, Moscow, Russian Federation.
| |
Collapse
|
6
|
Zabelin AA, Khristin AM, Shkuropatova VA, Khatypov RA, Shkuropatov AY. Primary electron transfer in Rhodobacter sphaeroides R-26 reaction centers under dehydration conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148238. [PMID: 32533935 DOI: 10.1016/j.bbabio.2020.148238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 11/26/2022]
Abstract
The photoinduced charge separation in QB-depleted reaction centers (RCs) from Rhodobacter sphaeroides R-26 in solid air-dried and vacuum-dried (~10-2 Torr) films, obtained in the presence of detergent n-dodecyl-β-D-maltoside (DM), is characterized using ultrafast transient absorption spectroscopy. It is shown that drying of RC-DM complexes is accompanied by reversible blue shifts of the ground-state absorption bands of the pigment ensemble, which suggest that no dehydration-induced structural destruction of RCs occurs in both types of films. In air-dried films, electron transfer from the excited primary electron donor P⁎ to the photoactive bacteriopheophytin HA proceeds in 4.7 ps to form the P+HA- state with essentially 100% yield. P+HA- decays in 260 ps both by electron transfer to the primary quinone QA to give the state P+QA- (87% yield) and by charge recombination to the ground state (13% yield). In vacuum-dried films, P⁎ decay is characterized by two kinetic components with time constants of 4.1 and 46 ps in a proportion of ~55%/45%, and P+HA- decays about 2-fold slower (462 ps) than in air-dried films. Deactivation of both P⁎ and P+HA- to the ground state effectively competes with the corresponding forward electron-transfer reactions in vacuum-dried RCs, reducing the yield of P+QA- to 68%. The results are compared with the data obtained for fully hydrated RCs in solution and are discussed in terms of the presence in the RC complexes of different water molecules, the removal/displacement of which affects spectral properties of pigment cofactors and rates and yields of the electron-transfer reactions.
Collapse
Affiliation(s)
- Alexey A Zabelin
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Anton M Khristin
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Valentina A Shkuropatova
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Ravil A Khatypov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Anatoly Ya Shkuropatov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation.
| |
Collapse
|
7
|
Timpmann K, Jalviste E, Chenchiliyan M, Kangur L, Jones MR, Freiberg A. High-pressure tuning of primary photochemistry in bacterial photosynthesis: membrane-bound versus detergent-isolated reaction centers. PHOTOSYNTHESIS RESEARCH 2020; 144:209-220. [PMID: 32095925 DOI: 10.1007/s11120-020-00724-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
While photosynthesis thrives at close to normal pressures and temperatures, it is presently well known that life is similarly commonplace in the hostile environments of the deep seas as well as around hydrothermal vents. It is thus imperative to understand how key biological processes perform under extreme conditions of high pressures and temperatures. Herein, comparative steady-state and picosecond time-resolved spectroscopic studies were performed on membrane-bound and detergent-purified forms of a YM210W mutant reaction center (RC) from Rhodobacter sphaeroides under modulating conditions of high hydrostatic pressure applied at ambient temperature. A previously established breakage of the lone hydrogen bond formed between the RC primary donor and the protein scaffold was shown to take place in the membrane-bound RC at an almost 3 kbar higher pressure than in the purified RC, confirming the stabilizing role of the lipid environment for membrane proteins. The main change in the multi-exponential decay of excited primary donor emission across the experimental 10 kbar pressure range involved an over two-fold continuous acceleration, the kinetics becoming increasingly mono-exponential. The fastest component of the emission decay, thought to be largely governed by the rate of primary charge separation, was distinctly slower in the membrane-bound RC than in the purified RC. The change in character of the emission decay with pressure was explained by the contribution of charge recombination to emission decreasing with pressure as a result of an increasing free energy gap between the charge-separated and excited primary donor states. Finally, it was demonstrated that, in contrast to a long-term experimental paradigm, adding a combination of sodium ascorbate and phenazine methosulfate to the protein solution potentially distorts natural photochemistry in bacterial RCs.
Collapse
Affiliation(s)
- Kõu Timpmann
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu, 50411, Estonia
| | - Erko Jalviste
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu, 50411, Estonia
| | - Manoop Chenchiliyan
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu, 50411, Estonia
| | - Liina Kangur
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu, 50411, Estonia
| | - Michael R Jones
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Arvi Freiberg
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu, 50411, Estonia.
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu, 51010, Estonia.
- Estonian Academy of Sciences, Kohtu 6, Tallinn, 10130, Estonia.
| |
Collapse
|
8
|
|
9
|
Mandal S, Espiritu E, Akram N, Lin S, Williams JC, Allen JP, Woodbury NW. Influence of the Electrochemical Properties of the Bacteriochlorophyll Dimer on Triplet Energy-Transfer Dynamics in Bacterial Reaction Centers. J Phys Chem B 2018; 122:10097-10107. [PMID: 30351114 DOI: 10.1021/acs.jpcb.8b07985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Energetics, protein dynamics, and electronic coupling are the key factors in controlling both electron and energy transfer in photosynthetic bacterial reaction centers (RCs). Here, we examine the rates and mechanistic pathways of the P+HA- radical-pair charge recombination, triplet state formation, and subsequent triplet energy transfer from the triplet state of the bacteriochlorophyll dimer (P) to the carotenoid in a series of mutant RCs (L131LH + M160LH (D1), L131LH + M197FH (D2), and L131LH + M160LH + M197FH (T1)) of Rhodobacter sphaeroides. In these mutants, the electronic structure of P is perturbed and the P/P+ midpoint potential is systematically increased due to addition of hydrogen bonds between P and the introduced residues. High-resolution, broad-band, transient absorption spectroscopy on the femtosecond to microsecond timescale shows that the charge recombination rate increases and the triplet energy transfer rate decreases in these mutants relative to the wild type (WT). The increase of the charge recombination rate is correlated to the increase in the energy level of P+HA- and the increase in the P/P+ midpoint potential. On the other hand, the decrease in rate of triplet energy transfer in the mutants can be explained in terms of a lower energy of 3P and a shift in the electron spin density distribution in the bacteriochlorophylls of P. The triplet energy-transfer rate follows the order of WT > L131LH + M197FH > L131LH + M160LH > L131LH + M160LH + M197FH, both at room temperature and at 77 K. A pronounced temperature dependence of the rate is observed for all of the RC samples. The activation energy associated to this process is increased in the mutants relative to WT, consistent with a lower 3P energy due to the addition of hydrogen bonds between P and the introduced residues.
Collapse
|
10
|
Rancova O, Jankowiak R, Abramavicius D. Role of Bath Fluctuations in the Double-Excitation Manifold in Shaping the 2DES of Bacterial Reaction Centers at Low Temperature. J Phys Chem B 2018; 122:1348-1366. [DOI: 10.1021/acs.jpcb.7b08905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Olga Rancova
- Institute
of Chemical Physics, Vilnius University, Sauletekio al 9-III, 10222 Vilnius, Lithuania
| | - Ryszard Jankowiak
- Department
of Chemistry and Department of Physics, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506-0401, United States
| | - Darius Abramavicius
- Institute
of Chemical Physics, Vilnius University, Sauletekio al 9-III, 10222 Vilnius, Lithuania
| |
Collapse
|
11
|
Inverted-region electron transfer as a mechanism for enhancing photosynthetic solar energy conversion efficiency. Proc Natl Acad Sci U S A 2017; 114:9267-9272. [PMID: 28814630 DOI: 10.1073/pnas.1704855114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In all photosynthetic organisms, light energy is used to drive electrons from a donor chlorophyll species via a series of acceptors across a biological membrane. These light-induced electron-transfer processes display a remarkably high quantum efficiency, indicating a near-complete inhibition of unproductive charge recombination reactions. It has been suggested that unproductive charge recombination could be inhibited if the reaction occurs in the so-called inverted region. However, inverted-region electron transfer has never been demonstrated in any native photosynthetic system. Here we demonstrate that the unproductive charge recombination in native photosystem I photosynthetic reaction centers does occur in the inverted region, at both room and cryogenic temperatures. Computational modeling of light-induced electron-transfer processes in photosystem I demonstrate a marked decrease in photosynthetic quantum efficiency, from 98% to below 72%, if the unproductive charge recombination process does not occur in the inverted region. Inverted-region electron transfer is therefore demonstrated to be an important mechanism contributing to efficient solar energy conversion in photosystem I. Inverted-region electron transfer does not appear to be an important mechanism in other photosystems; it is likely because of the highly reducing nature of photosystem I, and the energetic requirements placed on the pigments to operate in such a regime, that the inverted-region electron transfer mechanism becomes important.
Collapse
|
12
|
Faries KM, Dylla NP, Hanson DK, Holten D, Laible PD, Kirmaier C. Manipulating the Energetics and Rates of Electron Transfer in Rhodobacter capsulatus Reaction Centers with Asymmetric Pigment Content. J Phys Chem B 2017; 121:6989-7004. [DOI: 10.1021/acs.jpcb.7b01389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kaitlyn M. Faries
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Nicholas P. Dylla
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Deborah K. Hanson
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Dewey Holten
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Philip D. Laible
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Christine Kirmaier
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
13
|
Mandal S, Carey AM, Locsin J, Gao BR, Williams JC, Allen JP, Lin S, Woodbury NW. Mechanism of Triplet Energy Transfer in Photosynthetic Bacterial Reaction Centers. J Phys Chem B 2017; 121:6499-6510. [DOI: 10.1021/acs.jpcb.7b03373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sarthak Mandal
- Center
for Innovations in Medicine, The Biodesign Institute at ASU, Arizona State University, Tempe, Arizona 85287, United States
| | - Anne-Marie Carey
- Center
for Innovations in Medicine, The Biodesign Institute at ASU, Arizona State University, Tempe, Arizona 85287, United States
| | - Joshua Locsin
- Center
for Innovations in Medicine, The Biodesign Institute at ASU, Arizona State University, Tempe, Arizona 85287, United States
| | | | - JoAnn C. Williams
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287−1604, United States
| | - James P. Allen
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287−1604, United States
| | - Su Lin
- Center
for Innovations in Medicine, The Biodesign Institute at ASU, Arizona State University, Tempe, Arizona 85287, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287−1604, United States
| | - Neal W. Woodbury
- Center
for Innovations in Medicine, The Biodesign Institute at ASU, Arizona State University, Tempe, Arizona 85287, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287−1604, United States
| |
Collapse
|
14
|
Lee SH, Blake IM, Larsen AG, McDonald JA, Ohkubo K, Fukuzumi S, Reimers JR, Crossley MJ. Synthetically tuneable biomimetic artificial photosynthetic reaction centres that closely resemble the natural system in purple bacteria. Chem Sci 2016; 7:6534-6550. [PMID: 27928494 PMCID: PMC5125414 DOI: 10.1039/c6sc01076h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/16/2016] [Indexed: 12/18/2022] Open
Abstract
Porphyrin-based photosynthetic reaction centre (PRC) mimics, ZnPQ-Q2HP-C60 and MP2Q-Q2HP-C60 (M = Zn or 2H), designed to have a similar special-pair electron donor and similar charge-separation distances, redox processes and photochemical reaction rates to those in the natural PRC from purple bacteria, have been synthesised and extensive photochemical studies performed. Mechanisms of electron-transfer reactions are fully investigated using femtosecond and nanosecond transient absorption spectroscopy. In benzonitrile, all models show picosecond-timescale charge-separations and the final singlet charge-separations with the microsecond-timescale. The established lifetimes are long compared to other processes in organic solar cells or other organic light harvesting systems. These rigid, synthetically flexible molecules provide the closest mimics to the natural PRC so far synthesised and present a future direction for the design of light harvesters with controllable absorption, redox, and kinetics properties.
Collapse
Affiliation(s)
- Sai-Ho Lee
- School of Chemistry F11 , The University of Sydney , 2006 , NSW , Australia .
| | - Iain M Blake
- School of Chemistry F11 , The University of Sydney , 2006 , NSW , Australia .
| | - Allan G Larsen
- School of Chemistry F11 , The University of Sydney , 2006 , NSW , Australia .
| | - James A McDonald
- School of Chemistry F11 , The University of Sydney , 2006 , NSW , Australia .
| | - Kei Ohkubo
- Department of Material and Life Science , Graduate School of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan .
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 120-750 , Korea ; Faculty of Science and Engineering , Meijo University , Nagoya , Aichi 468-0073 , Japan
| | - Jeffrey R Reimers
- School of Chemistry F11 , The University of Sydney , 2006 , NSW , Australia . ; International Centre for Quantum and Molecular Structure , Shanghai University , 200444 , Shanghai , China . ; School of Mathematical and Physical Sciences , The University of Technology Sydney , 2007 , NSW , Australia .
| | - Maxwell J Crossley
- School of Chemistry F11 , The University of Sydney , 2006 , NSW , Australia .
| |
Collapse
|