1
|
Tani K, Kanno R, Harada A, Kobayashi Y, Minamino A, Takenaka S, Nakamura N, Ji XC, Purba ER, Hall M, Yu LJ, Madigan MT, Mizoguchi A, Iwasaki K, Humbel BM, Kimura Y, Wang-Otomo ZY. High-resolution structure and biochemical properties of the LH1-RC photocomplex from the model purple sulfur bacterium, Allochromatium vinosum. Commun Biol 2024; 7:176. [PMID: 38347078 PMCID: PMC10861460 DOI: 10.1038/s42003-024-05863-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
The mesophilic purple sulfur phototrophic bacterium Allochromatium (Alc.) vinosum (bacterial family Chromatiaceae) has been a favored model for studies of bacterial photosynthesis and sulfur metabolism, and its core light-harvesting (LH1) complex has been a focus of numerous studies of photosynthetic light reactions. However, despite intense efforts, no high-resolution structure and thorough biochemical analysis of the Alc. vinosum LH1 complex have been reported. Here we present cryo-EM structures of the Alc. vinosum LH1 complex associated with reaction center (RC) at 2.24 Å resolution. The overall structure of the Alc. vinosum LH1 resembles that of its moderately thermophilic relative Alc. tepidum in that it contains multiple pigment-binding α- and β-polypeptides. Unexpectedly, however, six Ca ions were identified in the Alc. vinosum LH1 bound to certain α1/β1- or α1/β3-polypeptides through a different Ca2+-binding motif from that seen in Alc. tepidum and other Chromatiaceae that contain Ca2+-bound LH1 complexes. Two water molecules were identified as additional Ca2+-coordinating ligands. Based on these results, we reexamined biochemical and spectroscopic properties of the Alc. vinosum LH1-RC. While modest but distinct effects of Ca2+ were detected in the absorption spectrum of the Alc. vinosum LH1 complex, a marked decrease in thermostability of its LH1-RC complex was observed upon removal of Ca2+. The presence of Ca2+ in the photocomplex of Alc. vinosum suggests that Ca2+-binding to LH1 complexes may be a common adaptation in species of Chromatiaceae for conferring spectral and thermal flexibility on this key component of their photosynthetic machinery.
Collapse
Affiliation(s)
- Kazutoshi Tani
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
- Graduate School of Medicine, Mie University, 1577 Kurimamachiyacho, Tsu, 514-8507, Japan.
| | - Ryo Kanno
- Quantum Wave Microscopy Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Ayaka Harada
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yuki Kobayashi
- Faculty of Science, Ibaraki University, Mito, 310-8512, Japan
| | - Akane Minamino
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Shinji Takenaka
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, 657-8501, Japan
| | | | - Xuan-Cheng Ji
- Faculty of Science, Ibaraki University, Mito, 310-8512, Japan
| | - Endang R Purba
- Scientific Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Malgorzata Hall
- Scientific Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Michael T Madigan
- School of Biological Sciences, Program in Microbiology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Akira Mizoguchi
- Graduate School of Medicine, Mie University, 1577 Kurimamachiyacho, Tsu, 514-8507, Japan
| | - Kenji Iwasaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Bruno M Humbel
- Provost Office, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
- Department of Cell Biology and Neuroscience, Juntendo University, Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, 657-8501, Japan.
| | | |
Collapse
|
2
|
Kawakami T, Yu LJ, Liang T, Okazaki K, Madigan MT, Kimura Y, Wang-Otomo ZY. Crystal structure of a photosynthetic LH1-RC in complex with its electron donor HiPIP. Nat Commun 2021; 12:1104. [PMID: 33597527 PMCID: PMC7889895 DOI: 10.1038/s41467-021-21397-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/26/2021] [Indexed: 11/12/2022] Open
Abstract
Photosynthetic electron transfers occur through multiple components ranging from small soluble proteins to large integral membrane protein complexes. Co-crystallization of a bacterial photosynthetic electron transfer complex that employs weak hydrophobic interactions was achieved by using high-molar-ratio mixtures of a soluble donor protein (high-potential iron-sulfur protein, HiPIP) with a membrane-embedded acceptor protein (reaction center, RC) at acidic pH. The structure of the co-complex offers a snapshot of a transient bioenergetic event and revealed a molecular basis for thermodynamically unfavorable interprotein electron tunneling. HiPIP binds to the surface of the tetraheme cytochrome subunit in the light-harvesting (LH1) complex-associated RC in close proximity to the low-potential heme-1 group. The binding interface between the two proteins is primarily formed by uncharged residues and is characterized by hydrophobic features. This co-crystal structure provides a model for the detailed study of long-range trans-protein electron tunneling pathways in biological systems. The high potential iron-sulfur (HiPIP) proteins are direct electron donors to the light-harvesting-reaction center complexes (LH1-RC) in photosynthetic β- and γ-Proteobacteria. Here, the authors present the 2.9 Å crystal structure of the HiPIP-bound LH1-RC complex from the thermophilic purple sulfur bacterium Thermochromatium tepidum and discuss mechanistic implications for the electron transfer pathway.
Collapse
Affiliation(s)
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | - Tai Liang
- Faculty of Science, Ibaraki University, Mito, Japan
| | | | - Michael T Madigan
- Department of Microbiology, Southern Illinois University, Carbondale, IL, USA
| | - Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, Japan.
| | | |
Collapse
|
3
|
Imanishi M, Takenouchi M, Takaichi S, Nakagawa S, Saga Y, Takenaka S, Madigan MT, Overmann J, Wang-Otomo ZY, Kimura Y. A Dual Role for Ca 2+ in Expanding the Spectral Diversity and Stability of Light-Harvesting 1 Reaction Center Photocomplexes of Purple Phototrophic Bacteria. Biochemistry 2019; 58:2844-2852. [PMID: 31145583 DOI: 10.1021/acs.biochem.9b00351] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The light-harvesting 1 reaction center (LH1-RC) complex in the purple sulfur bacterium Thiorhodovibrio ( Trv.) strain 970 cells exhibits its LH1 Q y transition at 973 nm, the lowest-energy Q y absorption among purple bacteria containing bacteriochlorophyll a (BChl a). Here we characterize the origin of this extremely red-shifted Q y transition. Growth of Trv. strain 970 did not occur in cultures free of Ca2+, and elemental analysis of Ca2+-grown cells confirmed that purified Trv. strain 970 LH1-RC complexes contained Ca2+. The LH1 Q y band of Trv. strain 970 was blue-shifted from 959 to 875 nm upon Ca2+ depletion, but the original spectral properties were restored upon Ca2+ reconstitution, which also occurs with the thermophilic purple bacterium Thermochromatium ( Tch.) tepidum. The amino acid sequences of the LH1 α- and β-polypeptides from Trv. strain 970 closely resemble those of Tch. tepidum; however, Ca2+ binding in the Trv. strain 970 LH1-RC occurred more selectively than in Tch. tepidum LH1-RC and with a reduced affinity. Ultraviolet resonance Raman analysis indicated that the number of hydrogen-bonding interactions between BChl a and LH1 proteins of Trv. strain 970 was significantly greater than for Tch. tepidum and that Ca2+ was indispensable for maintaining these bonds. Furthermore, perfusion-induced Fourier transform infrared analyses detected Ca2+-induced conformational changes in the binding site closely related to the unique spectral properties of Trv. strain 970. Collectively, our results reveal an ecological strategy employed by Trv. strain 970 of integrating Ca2+ into its LH1-RC complex to extend its light-harvesting capacity to regions of the near-infrared spectrum unused by other purple bacteria.
Collapse
Affiliation(s)
- Michie Imanishi
- Graduate School of Agricultural Science , Kobe University , Nada, Kobe 657-8501 , Japan
| | - Mizuki Takenouchi
- Faculty of Science , Ibaraki University , Bunkyo, Mito 310-8512 , Japan
| | - Shinichi Takaichi
- Faculty of Life Sciences , Tokyo University of Agriculture , Setagaya, Tokyo 156-8502 , Japan
| | - Shiori Nakagawa
- Department of Chemistry , Kindai University , Higashi-Osaka, Osaka 577-8502 , Japan
| | - Yoshitaka Saga
- Department of Chemistry , Kindai University , Higashi-Osaka, Osaka 577-8502 , Japan
| | - Shinji Takenaka
- Graduate School of Agricultural Science , Kobe University , Nada, Kobe 657-8501 , Japan
| | - Michael T Madigan
- Department of Microbiology , Southern Illinois University , Carbondale , Illinois 62901 , United States
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures , 38124 Braunschweig , Germany.,Microbiology , Braunschweig University of Technology , 38106 Braunschweig , Germany
| | | | - Yukihiro Kimura
- Graduate School of Agricultural Science , Kobe University , Nada, Kobe 657-8501 , Japan
| |
Collapse
|