1
|
Teodor AH, Bruce BD. Putting Photosystem I to Work: Truly Green Energy. Trends Biotechnol 2020; 38:1329-1342. [PMID: 32448469 DOI: 10.1016/j.tibtech.2020.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
Abstract
Meeting growing energy demands sustainably is one of the greatest challenges facing the world. The sun strikes the Earth with sufficient energy in 1.5 h to meet annual world energy demands, likely making solar energy conversion part of future sustainable energy production plans. Photosynthetic organisms have been evolving solar energy utilization strategies for nearly 3.5 billion years, making reaction centers including the remarkably stable Photosystem I (PSI) especially interesting for biophotovoltaic device integration. Although these biohybrid devices have steadily improved, their output remains low compared with traditional photovoltaics. We discuss strategies and methods to improve PSI-based biophotovoltaics, focusing on PSI-surface interaction enhancement, electrolytes, and light-harvesting enhancement capabilities. Desirable features and current drawbacks to PSI-based devices are also discussed.
Collapse
Affiliation(s)
- Alexandra H Teodor
- Graduate School of Genome Science and Technology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Barry D Bruce
- Graduate School of Genome Science and Technology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996, USA.
| |
Collapse
|
2
|
Szewczyk S, Białek R, Giera W, Burdziński G, van Grondelle R, Gibasiewicz K. Excitation dynamics in Photosystem I trapped in TiO 2 mesopores. PHOTOSYNTHESIS RESEARCH 2020; 144:235-245. [PMID: 32114649 PMCID: PMC7203582 DOI: 10.1007/s11120-020-00730-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Excitation decay in closed Photosystem I (PSI) isolated from cyanobacterium Synechocystis sp. PCC 6803 and dissolved in a buffer solution occurs predominantly with a ~ 24-ps lifetime, as measured both by time-resolved fluorescence and transient absorption. The same PSI particles deposited in mesoporous matrix made of TiO2 nanoparticles exhibit significantly accelerated excitation decay dominated by a ~ 6-ps component. Target analysis indicates that this acceleration is caused by ~ 50% increase of the rate constant of bulk Chls excitation quenching. As an effect of this increase, as much as ~ 70% of bulk Chls excitation is quenched before the establishment of equilibrium with the red Chls. Accelerated quenching may be caused by increased excitation trapping by the reaction center and/or quenching properties of the TiO2 surface directly interacting with PSI Chls. Also properties of the PSI red Chls are affected by the deposition in the TiO2 matrix: they become deeper traps due to an increase of their number and their oscillator strength is significantly reduced. These effects should be taken into account when constructing solar cells' photoelectrodes composed of PSI and artificial matrices.
Collapse
Affiliation(s)
- S Szewczyk
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznan, Poland
| | - R Białek
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznan, Poland
| | - W Giera
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznan, Poland
| | - G Burdziński
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznan, Poland
| | - R van Grondelle
- Department of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - K Gibasiewicz
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznan, Poland.
| |
Collapse
|
3
|
Szewczyk S, Białek R, Burdziński G, Gibasiewicz K. Photovoltaic activity of electrodes based on intact photosystem I electrodeposited on bare conducting glass. PHOTOSYNTHESIS RESEARCH 2020; 144:1-12. [PMID: 32078102 PMCID: PMC7113217 DOI: 10.1007/s11120-020-00722-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
We demonstrate photovoltaic activity of electrodes composed of fluorine-doped tin oxide (FTO) conducting glass and a multilayer of trimeric photosystem I (PSI) from cyanobacterium Synechocystis sp. PCC 6803 yielding, at open circuit potential (OCP) of + 100 mV (vs. SHE), internal quantum efficiency of (0.37 ± 0.11)% and photocurrent density of up to (0.5 ± 0.1) µA/cm2. The photocurrent measured for OCP is of cathodic nature meaning that preferentially the electrons are injected from the conducting layer of the FTO glass to the photooxidized PSI primary electron donor, P700+, and further transferred from the photoreduced final electron acceptor of PSI, Fb-, via ascorbate electrolyte to the counter electrode. This observation is consistent with preferential donor-side orientation of PSI on FTO imposed by applied electrodeposition. However, by applying high-positive bias (+ 620 mV) to the PSI-FTO electrode, exceeding redox midpoint potential of P700 (+ 450 mV), the photocurrent reverses its orientation and becomes anodic. This is explained by "switching off" the natural photoactivity of PSI particles (by the electrochemical oxidation of P700 to P700+) and "switching on" the anodic photocurrent from PSI antenna Chls prone to photooxidation at high potentials. The efficient control of the P700 redox state (P700 or P700+) by external bias applied to the PSI-FTO electrodes was evidenced by ultrafast transient absorption spectroscopy. The advantage of the presented system is its structural simplicity together with in situ-proven high intactness of the PSI particles.
Collapse
Affiliation(s)
- Sebastian Szewczyk
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Rafał Białek
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Gotard Burdziński
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Krzysztof Gibasiewicz
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland.
| |
Collapse
|
4
|
Szewczyk S, Abram M, Białek R, Haniewicz P, Karolczak J, Gapiński J, Kargul J, Gibasiewicz K. On the nature of uncoupled chlorophylls in the extremophilic photosystem I-light harvesting I supercomplex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148136. [PMID: 31825811 DOI: 10.1016/j.bbabio.2019.148136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/18/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023]
Abstract
Photosystem I core-light-harvesting antenna supercomplexes (PSI-LHCI) were isolated from the extremophilic red alga Cyanidioschyzon merolae and studied by three fluorescence techniques in order to characterize chlorophylls (Chls) energetically uncoupled from the PSI reaction center (RC). Such Chls are observed in virtually all optical experiments of any PSI core and PSI-LHCI supercomplex preparations across various species and may influence the operation of PSI-based solar cells and other biohybrid systems. However, the nature of the uncoupled Chls (uChls) has never been explored deeply before. In this work, the amount of uChls was controlled by stirring the solution of C. merolae PSI-LHCI supercomplex samples at elevated temperature (~303 K) and was found to increase from <2% in control samples up to 47% in solutions stirred for 3.5 h. The fluorescence spectrum of uChls was found to be blue-shifted by ~20 nm (to ~680 nm) relative to the fluorescence band from Chls that are well coupled to PSI RC. This effect indicates that mechanical stirring leads to disappearance of some red Chls (emitting at above ~700 nm) that are present in the intact LHCI antenna associated with the PSI core. Comparative diffusion studies of control and stirred samples by fluorescence correlation spectroscopy together with biochemical analysis by SDS-PAGE and BN-PAGE indicate that energetically uncoupled Lhcr subunits are likely to be still physically attached to the PSI core, albeit with altered three-dimensional organization due to the mechanical stress.
Collapse
Affiliation(s)
- Sebastian Szewczyk
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Mateusz Abram
- Solar Fuels Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland; Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Rafał Białek
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Patrycja Haniewicz
- Solar Fuels Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Jerzy Karolczak
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Jacek Gapiński
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Joanna Kargul
- Solar Fuels Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| | - Krzysztof Gibasiewicz
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
| |
Collapse
|
5
|
Abram M, Białek R, Szewczyk S, Karolczak J, Gibasiewicz K, Kargul J. Remodeling of excitation energy transfer in extremophilic red algal PSI-LHCI complex during light adaptation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148093. [DOI: 10.1016/j.bbabio.2019.148093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/01/2019] [Accepted: 10/18/2019] [Indexed: 12/30/2022]
|
6
|
Giera W, Szewczyk S, McConnell MD, Redding KE, van Grondelle R, Gibasiewicz K. Uphill energy transfer in photosystem I from Chlamydomonas reinhardtii. Time-resolved fluorescence measurements at 77 K. PHOTOSYNTHESIS RESEARCH 2018; 137:321-335. [PMID: 29619738 DOI: 10.1007/s11120-018-0506-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Energetic properties of chlorophylls in photosynthetic complexes are strongly modulated by their interaction with the protein matrix and by inter-pigment coupling. This spectral tuning is especially striking in photosystem I (PSI) complexes that contain low-energy chlorophylls emitting above 700 nm. Such low-energy chlorophylls have been observed in cyanobacterial PSI, algal and plant PSI-LHCI complexes, and individual light-harvesting complex I (LHCI) proteins. However, there has been no direct evidence of their presence in algal PSI core complexes lacking LHCI. In order to determine the lowest-energy states of chlorophylls and their dynamics in algal PSI antenna systems, we performed time-resolved fluorescence measurements at 77 K for PSI core and PSI-LHCI complexes isolated from the green alga Chlamydomonas reinhardtii. The pool of low-energy chlorophylls observed in PSI cores is generally smaller and less red-shifted than that observed in PSI-LHCI complexes. Excitation energy equilibration between bulk and low-energy chlorophylls in the PSI-LHCI complexes at 77 K leads to population of excited states that are less red-shifted (by ~ 12 nm) than at room temperature. On the other hand, analysis of the detection wavelength dependence of the effective trapping time of bulk excitations in the PSI core at 77 K provided evidence for an energy threshold at ~ 675 nm, above which trapping slows down. Based on these observations, we postulate that excitation energy transfer from bulk to low-energy chlorophylls and from bulk to reaction center chlorophylls are thermally activated uphill processes that likely occur via higher excitonic states of energy accepting chlorophylls.
Collapse
Affiliation(s)
- Wojciech Giera
- Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614, Poznań, Poland.
| | - Sebastian Szewczyk
- Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614, Poznań, Poland
| | - Michael D McConnell
- Department of Chemistry and Biochemistry, and Center for Bioenergy and Photosynthesis, Arizona State University, 1711 S. Rural Rd, Box 871604, Tempe, AZ, 85287-1604, USA
| | - Kevin E Redding
- Department of Chemistry and Biochemistry, and Center for Bioenergy and Photosynthesis, Arizona State University, 1711 S. Rural Rd, Box 871604, Tempe, AZ, 85287-1604, USA
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Krzysztof Gibasiewicz
- Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614, Poznań, Poland
| |
Collapse
|