1
|
Yadav RM, Chouhan N, Gunasekaran JX, Madireddi SK, Nerusu A, Subramanyam R. The interplay between LHCSR and PSBS proteins provides photoprotection in Chlamydomonas reinhardtii pgr5 mutant under high light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 261:113060. [PMID: 39546926 DOI: 10.1016/j.jphotobiol.2024.113060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Cyclic electron transport (CET) is a vital alternative route that protects against photodamage and aids in energy production. This process depends on proton gradient regulation 5 (PGR5) and PGRL1-dependent pathways associated with CET. The exact roles of these proteins in photosystem I photochemistry under prolonged high light conditions are not fully understood. Continuous light adaptation hinges on two critical mechanisms: alterations in the proton motive force (pmf) and adjustments in the ratio of proteins activated by high light that dissipate excess light through non-photochemical quenching (NPQ). To explore this, we studied pgrl1 and pgr5 mutants to gauge their roles in balancing photochemistry and photoacclimation. These mutants showed inhibited growth, reduced photosynthetic efficiency, and a lowered pmf, leading to diminished non-photochemical energy quenching (qE) under high light. Prolonged high light exposure slowed down unregulated energy losses Y(NO), and relaxation helped regulate photosynthetic activity by increasing photoinhibitory quenching (qI), thus preventing further damage to the photosystem. The precise balance between the two pmf components, ΔpH and Δψ, is critical for controlling photochemistry and photoacclimation, yet remains elusive. In pgr5 reduced pmf led to an accumulation of cytochrome b6f under high light, and a decrease in the ΔpH component and increased the Δψ component's role in photosynthetic acclimation. Notably, light-harvesting complex stress response protein 3 (LHCSR3) showed decreased expression in pgrl1, whereas pgr5 exhibited no expression of both LHCSR3 and LHCSR1 under high-light conditions. Moreover, continuous increase in PSBS protein accumulation in pgr5 suggests enhanced photoprotection in the absence of LHCSR3 under high light. The study provides significant insights into how CET regulates photoprotective proteins LHCSR and PSBS, influencing Chlamydomonas' survival strategies.
Collapse
Affiliation(s)
- Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Nisha Chouhan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Jerome Xavier Gunasekaran
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Sai Kiran Madireddi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Aparna Nerusu
- Department of Biotechnology, Vignan's Foundation of Science, Technology and Research, Guntur, Andhra Pradesh 522213 India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India.
| |
Collapse
|
2
|
Ermakova M, Fitzpatrick D, Larkum AWD. Cyclic electron flow and Photosystem II-less photosynthesis. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24185. [PMID: 39471160 DOI: 10.1071/fp24185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/12/2024] [Indexed: 11/01/2024]
Abstract
Oxygenic photosynthesis is characterised by the cooperation of two photo-driven complexes, Photosystem II (PSII) and Photosystem I (PSI), sequentially linked through a series of redox-coupled intermediates. Divergent evolution has resulted in photosystems exhibiting complementary redox potentials, spanning the range necessary to oxidise water and reduce CO2 within a single system. Catalysing nature's most oxidising reaction to extract electrons from water is a highly specialised task that limits PSII's metabolic function. In contrast, potential electron donors in PSI span a range of redox potentials, enabling it to accept electrons from various metabolic processes. This metabolic flexibility of PSI underpins the capacity of photosynthetic organisms to balance energy supply with metabolic demands, which is key for adaptation to environmental changes. Here, we review the phenomenon of 'PSII-less photosynthesis' where PSI functions independently of PSII by operating cyclic electron flow using electrons derived from non-photochemical reactions. PSII-less photosynthesis enables supercharged ATP production and is employed, for example, by cyanobacteria's heterocysts to host nitrogen fixation and by bundle sheath cells of C4 plants to boost CO2 assimilation. We discuss the energetic benefits of this arrangement and the prospects of utilising it to improve the productivity and stress resilience of photosynthetic organisms.
Collapse
Affiliation(s)
- Maria Ermakova
- School of Biological Sciences, Monash University, Melbourne, Vic 3800, Australia; and Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Australian National University, Acton, ACT 2600, Australia
| | - Duncan Fitzpatrick
- Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Australian National University, Acton, ACT 2600, Australia
| | - Anthony W D Larkum
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
3
|
Taj Z, Bakka K, Challabathula D. Halotolerant PGPB Staphylococcus sciuri ET101 protects photosynthesis through activation of redox dissipation pathways in Lycopersicon esculentum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108482. [PMID: 38492488 DOI: 10.1016/j.plaphy.2024.108482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
Photosynthesis is known to be seriously affected by salt stress. The stress induced membrane damage leads to disrupted photosynthetic components causing imbalance between production and utilization of ATP/NADPH with generation of ROS leading to photoinhibition and photodamage. In the current study, role of halotolerant plant growth promoting bacteria (PGPB) Staphylococcus sciuri ET101 in protection of photosynthesis in tomato plants during salinity stress was evaluated by analysing changes in antioxidant defense and activation of redox dissipation pathways. Inoculation of S. sciuri ET101 significantly enhanced the growth of tomato plants with significantly higher photosynthetic rates (PN) under normal and salinity stress conditions. Further, increased membrane stability, soluble sugar accumulation and significant decrease in malondialdehyde (MDA) content in leaves of ET101 inoculated tomato plants under normal and salinity were observed along with increased expression of antioxidant genes for efficient ROS detoxification and suppression of oxidative damage. Additionally, salinity induced decrease in rate of photosynthesis (PN) due to lowered chloroplastic CO2 concentration (Cc) attributed by low mesophyll conductance (gm) in uninoculated plants was alleviated by ET101 inoculation showing significantly higher carboxylation rate (Vcmax), RuBP generation (Jmax) and increased photorespiration (PR). The genes involved in photorespiratory process, cyclic electron flow (CEF), and alternative oxidase (AOX) pathway of mitochondrial respiration were abundantly expressed in leaves of ET101 inoculated plants indicating their involvement in protecting photosynthesis from salt stress induced photoinhibition. Collectively, our results indicated that S. sciuri ET101 has the potential in protecting photosynthesis of tomato plants under salinity stress through activation of redox dissipation pathways.
Collapse
Affiliation(s)
- Zarin Taj
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| | - Kavya Bakka
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| | - Dinakar Challabathula
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610 005, India; Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu, Thiruvarur, 610 005, India.
| |
Collapse
|
4
|
Maekawa S, Ohnishi M, Wada S, Ifuku K, Miyake C. Enhanced Reduction of Ferredoxin in PGR5-Deficient Mutant of Arabidopsis thaliana Stimulated Ferredoxin-Dependent Cyclic Electron Flow around Photosystem I. Int J Mol Sci 2024; 25:2677. [PMID: 38473924 DOI: 10.3390/ijms25052677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/12/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
The molecular entity responsible for catalyzing ferredoxin (Fd)-dependent cyclic electron flow around photosystem I (Fd-CEF) remains unidentified. To reveal the in vivo molecular mechanism of Fd-CEF, evaluating ferredoxin reduction-oxidation kinetics proves to be a reliable indicator of Fd-CEF activity. Recent research has demonstrated that the expression of Fd-CEF activity is contingent upon the oxidation of plastoquinone. Moreover, chloroplast NAD(P)H dehydrogenase does not catalyze Fd-CEF in Arabidopsis thaliana. In this study, we analyzed the impact of reduced Fd on Fd-CEF activity by comparing wild-type and pgr5-deficient mutants (pgr5hope1). PGR5 has been proposed as the mediator of Fd-CEF, and pgr5hope1 exhibited a comparable CO2 assimilation rate and the same reduction-oxidation level of PQ as the wild type. However, P700 oxidation was suppressed with highly reduced Fd in pgr5hope1, unlike in the wild type. As anticipated, the Fd-CEF activity was enhanced in pgr5hope1 compared to the wild type, and its activity further increased with the oxidation of PQ due to the elevated CO2 assimilation rate. This in vivo research clearly demonstrates that the expression of Fd-CEF activity requires not only reduced Fd but also oxidized PQ. Importantly, PGR5 was found to not catalyze Fd-CEF, challenging previous assumptions about its role in this process.
Collapse
Affiliation(s)
- Shu Maekawa
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
| | - Miho Ohnishi
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Kyoto 606-8502, Japan
| | - Shinya Wada
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Kyoto 606-8502, Japan
| | - Kentaro Ifuku
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Kyoto 606-8502, Japan
- Graduate School for Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Chikahiro Miyake
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Kyoto 606-8502, Japan
| |
Collapse
|
5
|
Degen GE, Pastorelli F, Johnson MP. Proton Gradient Regulation 5 is required to avoid photosynthetic oscillations during light transitions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:947-961. [PMID: 37891008 DOI: 10.1093/jxb/erad428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/27/2023] [Indexed: 10/29/2023]
Abstract
The production of ATP and NADPH by the light reactions of photosynthesis and their consumption by the Calvin-Benson-Bassham (CBB) cycle and other downstream metabolic reactions requires careful regulation. Environmental shifts perturb this balance, leading to photo-oxidative stress and losses in CO2 assimilation. Imbalances in the production and consumption of ATP and NADPH manifest themselves as transient instability in the chlorophyll fluorescence, P700, electrochromic shift, and CO2 uptake signals recorded on leaves. These oscillations can be induced in wild-type plants by sudden shifts in CO2 concentration or light intensity; however, mutants exhibiting increased oscillatory behaviour have yet to be reported. This has precluded an understanding of the regulatory mechanisms employed by plants to suppress oscillations. Here we show that the Arabidopsis pgr5 mutant, which is deficient in Proton Gradient Regulation 5 (PGR5)-dependent cyclic electron transfer (CET), exhibits increased oscillatory behaviour. In contrast, mutants lacking the NADH-dehydrogenase-like-dependent CET are largely unaffected. The absence of oscillations in the hope2 mutant which, like pgr5, lacks photosynthetic control and exhibits high ATP synthase conductivity, ruled out loss of these photoprotective mechanisms as causes. Instead, we observed slower formation of the proton motive force and, by inference, ATP synthesis in pgr5 following environmental perturbation, leading to the transient reduction of the electron transfer chain and photosynthetic oscillations. PGR5-dependent CET therefore plays a major role in damping the effect of environmental perturbations on photosynthesis to avoid losses in CO2 fixation.
Collapse
Affiliation(s)
- Gustaf E Degen
- Plants, Photosynthesis & Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Federica Pastorelli
- Plants, Photosynthesis & Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Matthew P Johnson
- Plants, Photosynthesis & Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
6
|
Sato R, Masuda S. Live Cell Imaging of ATP Dynamics in Plant Cells. Methods Mol Biol 2022; 2525:259-266. [PMID: 35836074 DOI: 10.1007/978-1-0716-2473-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Adenosine triphosphate (ATP) is a central metabolite that functions as the energy currency in a living cell. Therefore, visualizing cellular ATP dynamics provides the fundamental information necessary to understand the molecular events involving life phenomena. Live cell imaging technologies using fluorescence (FL)-based indicators have been developed to analyze the dynamics of various biological processes, such as intracellular ATP synthesis and consumption. However, the application of FL-based indicators to plant cells is limited due to the presence of strong chlorophyll autofluorescence, which drastically worsen the signal-to-noise ratio. The bioluminescent (BL) indicators that do not require excitation light could overcome this problem. In this chapter, we introduce a methodology to analyze ATP dynamics in plant cells using BL ATP indicators.
Collapse
Affiliation(s)
- Ryoichi Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan.
| |
Collapse
|
7
|
Voon CP, Law YS, Guan X, Lim SL, Xu Z, Chu WT, Zhang R, Sun F, Labs M, Leister D, Pribil M, Hronková M, Kubásek J, Cui Y, Jiang L, Tsuyama M, Gardeström P, Tikkanen M, Lim BL. Modulating the activities of chloroplasts and mitochondria promotes adenosine triphosphate production and plant growth. QUANTITATIVE PLANT BIOLOGY 2021; 2:e7. [PMID: 37077204 PMCID: PMC10095973 DOI: 10.1017/qpb.2021.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 05/03/2023]
Abstract
Efficient photosynthesis requires a balance of ATP and NADPH production/consumption in chloroplasts, and the exportation of reducing equivalents from chloroplasts is important for balancing stromal ATP/NADPH ratio. Here, we showed that the overexpression of purple acid phosphatase 2 on the outer membranes of chloroplasts and mitochondria can streamline the production and consumption of reducing equivalents in these two organelles, respectively. A higher capacity of consumption of reducing equivalents in mitochondria can indirectly help chloroplasts to balance the ATP/NADPH ratio in stroma and recycle NADP+, the electron acceptors of the linear electron flow (LEF). A higher rate of ATP and NADPH production from the LEF, a higher capacity of carbon fixation by the Calvin-Benson-Bassham (CBB) cycle and a greater consumption of NADH in mitochondria enhance photosynthesis in the chloroplasts, ATP production in the mitochondria and sucrose synthesis in the cytosol and eventually boost plant growth and seed yields in the overexpression lines.
Collapse
Affiliation(s)
- Chia P. Voon
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
| | - Yee-Song Law
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
| | - Xiaoqian Guan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
| | - Shey-Li Lim
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
| | - Zhou Xu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
| | - Wing-Tung Chu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
| | - Renshan Zhang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
| | - Feng Sun
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
| | - Mathias Labs
- Plant Molecular Biology, Department of Biology, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
| | - Dario Leister
- Plant Molecular Biology, Department of Biology, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Hronková
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Jiří Kubásek
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Yong Cui
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Michito Tsuyama
- Department of Agriculture, Kyushu University, Fukuoka, Japan
| | - Per Gardeström
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Mikko Tikkanen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Boon L. Lim
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
- Author for correspondence: B. L. Lim, E-mail:
| |
Collapse
|
8
|
Ma M, Liu Y, Bai C, Yang Y, Sun Z, Liu X, Zhang S, Han X, Yong JWH. The Physiological Functionality of PGR5/PGRL1-Dependent Cyclic Electron Transport in Sustaining Photosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:702196. [PMID: 34305990 PMCID: PMC8294387 DOI: 10.3389/fpls.2021.702196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/07/2021] [Indexed: 05/07/2023]
Abstract
The cyclic electron transport (CET), after the linear electron transport (LET), is another important electron transport pathway during the light reactions of photosynthesis. The proton gradient regulation 5 (PGR5)/PRG5-like photosynthetic phenotype 1 (PGRL1) and the NADH dehydrogenase-like complex pathways are linked to the CET. Recently, the regulation of CET around photosystem I (PSI) has been recognized as crucial for photosynthesis and plant growth. Here, we summarized the main biochemical processes of the PGR5/PGRL1-dependent CET pathway and its physiological significance in protecting the photosystem II and PSI, ATP/NADPH ratio maintenance, and regulating the transitions between LET and CET in order to optimize photosynthesis when encountering unfavorable conditions. A better understanding of the PGR5/PGRL1-mediated CET during photosynthesis might provide novel strategies for improving crop yield in a world facing more extreme weather events with multiple stresses affecting the plants.
Collapse
Affiliation(s)
- Mingzhu Ma
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yifei Liu
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Yifei Liu, ; Xiaori Han,
| | - Chunming Bai
- National Sorghum Improvement Center, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Yunhong Yang
- Professional Technology Innovation Center of Magnesium Nutrition, Yingkou Magnesite Chemical Ind Group Co., Ltd., Yingkou, China
| | - Zhiyu Sun
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xinyue Liu
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Siwei Zhang
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xiaori Han
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Yifei Liu, ; Xiaori Han,
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
9
|
Su L, Xie J, Wen W, Li J, Zhou P, An Y. Interaction of zinc and IAA alleviate aluminum-induced damage on photosystems via promoting proton motive force and reducing proton gradient in alfalfa. BMC PLANT BIOLOGY 2020; 20:433. [PMID: 32948141 PMCID: PMC7501636 DOI: 10.1186/s12870-020-02643-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In acidic soils, aluminum (Al) competing with Zn results in Zn deficiency in plants. Zn is essential for auxin biosynthesis. Zn-mediated alleviation of Al toxicity has been rarely studied, the mechanism of Zn alleviation on Al-induced photoinhibition in photosystems remains unclear. The objective of this study was to investigate the effects of Zn and IAA on photosystems of Al-stressed alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or100 μM AlCl3 combined with 0 or 50 μM ZnCl2, and then foliar spray with water or 6 mg L- 1 IAA. RESULTS Our results showed that Al stress significantly decreased plant growth rate, net photosynthetic rate (Pn), quantum yields and electron transfer rates of PSI and PSII. Exogenous application of Zn and IAA significantly alleviated the Al-induced negative effects on photosynthetic machinery, and an interaction of Zn and IAA played an important role in the alleviative effects. After removing apical buds of Al-stressed alfalfa seedlings, the values of pmf, gH+ and Y(II) under exogenous spraying IAA were significantly higher, and ΔpHpmf was significantly lower in Zn addition than Al treatment alone, but the changes did not occur under none spraying IAA. The interaction of Zn and IAA directly increased Y(I), Y(II), ETRI and ETRII, and decreased O2- content of Al-stressed seedlings. In addition, the transcriptome analysis showed that fourteen functionally noted genes classified into functional category of energy production and conversion were differentially expressed in leaves of alfalfa seedlings with and without apical buds. CONCLUSION Our results suggest that the interaction of zinc and IAA alleviate aluminum-induced damage on photosystems via increasing pmf and decreasing ΔpHpmf between lumen and stroma.
Collapse
Affiliation(s)
- Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jianping Xie
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jiaojiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 201101, China.
| |
Collapse
|
10
|
Barbato R, Tadini L, Cannata R, Peracchio C, Jeran N, Alboresi A, Morosinotto T, Bajwa AA, Paakkarinen V, Suorsa M, Aro EM, Pesaresi P. Higher order photoprotection mutants reveal the importance of ΔpH-dependent photosynthesis-control in preventing light induced damage to both photosystem II and photosystem I. Sci Rep 2020; 10:6770. [PMID: 32317747 PMCID: PMC7174426 DOI: 10.1038/s41598-020-62717-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/12/2020] [Indexed: 11/27/2022] Open
Abstract
Although light is essential for photosynthesis, when in excess, it may damage the photosynthetic apparatus, leading to a phenomenon known as photoinhibition. Photoinhibition was thought as a light-induced damage to photosystem II; however, it is now clear that even photosystem I may become very vulnerable to light. One main characteristic of light induced damage to photosystem II (PSII) is the increased turnover of the reaction center protein, D1: when rate of degradation exceeds the rate of synthesis, loss of PSII activity is observed. With respect to photosystem I (PSI), an excess of electrons, instead of an excess of light, may be very dangerous. Plants possess a number of mechanisms able to prevent, or limit, such damages by safe thermal dissipation of light energy (non-photochemical quenching, NPQ), slowing-down of electron transfer through the intersystem transport chain (photosynthesis-control, PSC) in co-operation with the Proton Gradient Regulation (PGR) proteins, PGR5 and PGRL1, collectively called as short-term photoprotection mechanisms, and the redistribution of light between photosystems, called state transitions (responsible of fluorescence quenching at PSII, qT), is superimposed to these short term photoprotective mechanisms. In this manuscript we have generated a number of higher order mutants by crossing genotypes carrying defects in each of the short-term photoprotection mechanisms, with the final aim to obtain a direct comparison of their role and efficiency in photoprotection. We found that mutants carrying a defect in the ΔpH-dependent photosynthesis-control are characterized by photoinhibition of both photosystems, irrespectively of whether PSBS-dependent NPQ or state transitions defects were present or not in the same individual, demonstrating the primary role of PSC in photoprotection. Moreover, mutants with a limited capability to develop a strong PSBS-dependent NPQ, were characterized by a high turnover of the D1 protein and high values of Y(NO), which might reflect energy quenching processes occurring within the PSII reaction center.
Collapse
Affiliation(s)
- Roberto Barbato
- Department of Sciences and Innovation Technology, University of Eastern Piedmont Amadeo Avogadro, I-15121, Alessandria, Italy.
| | - Luca Tadini
- Department of Biosciences, University of Milan, I-20133, Milan, Italy
| | - Romina Cannata
- Department of Sciences and Innovation Technology, University of Eastern Piedmont Amadeo Avogadro, I-15121, Alessandria, Italy
| | | | - Nicolaj Jeran
- Department of Biosciences, University of Milan, I-20133, Milan, Italy
| | | | | | - Azfar Ali Bajwa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, SF-20520, Turku, Finland
| | - Virpi Paakkarinen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, SF-20520, Turku, Finland
| | - Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, SF-20520, Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, SF-20520, Turku, Finland
| | - Paolo Pesaresi
- Department of Biosciences, University of Milan, I-20133, Milan, Italy
| |
Collapse
|