1
|
Bishara Robertson IL, Zhang H, Reisner E, Butt JN, Jeuken LJC. Engineering of bespoke photosensitiser-microbe interfaces for enhanced semi-artificial photosynthesis. Chem Sci 2024; 15:9893-9914. [PMID: 38966358 PMCID: PMC11220614 DOI: 10.1039/d4sc00864b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Biohybrid systems for solar fuel production integrate artificial light-harvesting materials with biological catalysts such as microbes. In this perspective, we discuss the rational design of the abiotic-biotic interface in biohybrid systems by reviewing microbes and synthetic light-harvesting materials, as well as presenting various approaches to coupling these two components together. To maximise performance and scalability of such semi-artificial systems, we emphasise that the interfacial design requires consideration of two important aspects: attachment and electron transfer. It is our perspective that rational design of this photosensitiser-microbe interface is required for scalable solar fuel production. The design and assembly of a biohybrid with a well-defined electron transfer pathway allows mechanistic characterisation and optimisation for maximum efficiency. Introduction of additional catalysts to the system can close the redox cycle, omitting the need for sacrificial electron donors. Studies that electronically couple light-harvesters to well-defined biological entities, such as emerging photosensitiser-enzyme hybrids, provide valuable knowledge for the strategic design of whole-cell biohybrids. Exploring the interactions between light-harvesters and redox proteins can guide coupling strategies when translated into larger, more complex microbial systems.
Collapse
Affiliation(s)
| | - Huijie Zhang
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA the Netherlands
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Julea N Butt
- School of Chemistry and School of Biological Sciences, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA the Netherlands
| |
Collapse
|
2
|
Ahmad R, Tyryshkin AM, Xie L, Hansen WA, Yachnin BJ, Emge TJ, Mashrai A, Khare SD, Knapp S. A Bis(imidazole)-based cysteine labeling tool for metalloprotein assembly. J Inorg Biochem 2023; 244:112206. [PMID: 37030124 DOI: 10.1016/j.jinorgbio.2023.112206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Precise metal-protein coordination by design remains a considerable challenge. Polydentate, high-metal-affinity protein modifications, both chemical and recombinant, can enable metal localization. However, these constructs are often bulky, conformationally and stereochemically ill-defined, or coordinately saturated. Here, we expand the biomolecular metal-coordination toolbox with the irreversible attachment to cysteine of bis(1-methylimidazol-2-yl)ethene ("BMIE"), which generates a compact imidazole-based metal-coordinating ligand. Conjugate additions of small-molecule thiols (thiocresol and N-Boc-Cys) with BMIE confirm general thiol reactivity. The BMIE adducts are shown to complex the divalent metal ions Cu++ and Zn++ in bidentate (N2) and tridentate (N2S*) coordination geometries. Cysteine-targeted BMIE modification (>90% yield at pH 8.0) of a model protein, the S203C variant of carboxypeptidase G2 (CPG2), measured with ESI-MS, confirms its utility as a site-selective bioconjugation method. ICP-MS analysis confirms mono-metallation of the BMIE-modified CPG2 protein with Zn++, Cu++, and Co++. EPR characterization of the BMIE-modified CPG2 protein reveals the structural details of the site selective 1:1 BMIE-Cu++ coordination and symmetric tetragonal geometry under physiological conditions and in the presence of various competing and exchangeable ligands (H2O/HO-, tris, and phenanthroline). An X-ray protein crystal structure of BMIE-modified CPG2-S203C demonstrates that the BMIE modification is minimally disruptive to the overall protein structure, including the carboxypeptidase active sites, although Zn++ metalation could not be conclusively discerned at the resolution obtained. The carboxypeptidase catalytic activity of BMIE-modified CPG2-S203C was also assayed and found to be minimally affected. These features, combined with ease of attachment, define the new BMIE-based ligation as a versatile metalloprotein design tool, and enable future catalytic and structural applications.
Collapse
Affiliation(s)
- Raheel Ahmad
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America
| | - Alexei M Tyryshkin
- Department of Marine and Coastal Sciences, Rutgers The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ 08901, United States of America
| | - Lingjun Xie
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America
| | - William A Hansen
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America; Rutgers Center for Integrative Proteomics Research, 174 Frelinghuysen Rd, Piscataway, NJ 08854, United States of America
| | - Brahm J Yachnin
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America; Rutgers Center for Integrative Proteomics Research, 174 Frelinghuysen Rd, Piscataway, NJ 08854, United States of America
| | - Thomas J Emge
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America
| | - Ashraf Mashrai
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America; Rutgers Center for Integrative Proteomics Research, 174 Frelinghuysen Rd, Piscataway, NJ 08854, United States of America
| | - Sagar D Khare
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America; Rutgers Center for Integrative Proteomics Research, 174 Frelinghuysen Rd, Piscataway, NJ 08854, United States of America
| | - Spencer Knapp
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America.
| |
Collapse
|
3
|
Zubi YS, Liu B, Gu Y, Sahoo D, Lewis JC. Controlling the optical and catalytic properties of artificial metalloenzyme photocatalysts using chemogenetic engineering. Chem Sci 2022; 13:1459-1468. [PMID: 35222930 PMCID: PMC8809394 DOI: 10.1039/d1sc05792h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/08/2022] [Indexed: 11/21/2022] Open
Abstract
Visible light photocatalysis enables a broad range of organic transformations that proceed via single electron or energy transfer. Metal polypyridyl complexes are among the most commonly employed visible light photocatalysts. The photophysical properties of these complexes have been extensively studied and can be tuned by modifying the substituents on the pyridine ligands. On the other hand, ligand modifications that enable substrate binding to control reaction selectivity remain rare. Given the exquisite control that enzymes exert over electron and energy transfer processes in nature, we envisioned that artificial metalloenzymes (ArMs) created by incorporating Ru(ii) polypyridyl complexes into a suitable protein scaffold could provide a means to control photocatalyst properties. This study describes approaches to create covalent and non-covalent ArMs from a variety of Ru(ii) polypyridyl cofactors and a prolyl oligopeptidase scaffold. A panel of ArMs with enhanced photophysical properties were engineered, and the nature of the scaffold/cofactor interactions in these systems was investigated. These ArMs provided higher yields and rates than Ru(Bpy)3 2+ for the reductive cyclization of dienones and the [2 + 2] photocycloaddition between C-cinnamoyl imidazole and 4-methoxystyrene, suggesting that protein scaffolds could provide a means to improve the efficiency of visible light photocatalysts.
Collapse
Affiliation(s)
- Yasmine S Zubi
- Department of Chemistry, Indiana University Bloomington Indiana 47405 USA
| | - Bingqing Liu
- Department of Chemistry, Indiana University Bloomington Indiana 47405 USA
| | - Yifan Gu
- Department of Chemistry, University of Chicago Chicago IL 60637 USA
| | - Dipankar Sahoo
- Department of Chemistry, Indiana University Bloomington Indiana 47405 USA
| | - Jared C Lewis
- Department of Chemistry, Indiana University Bloomington Indiana 47405 USA
| |
Collapse
|
4
|
Gomes Ramalli S, John Miles A, Janes RW, Wallace BA. The PCDDB (Protein Circular Dichroism Data Bank): A Bioinformatics Resource for Protein Characterisations and Methods Development. J Mol Biol 2022; 434:167441. [PMID: 34999124 DOI: 10.1016/j.jmb.2022.167441] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/19/2021] [Accepted: 01/01/2022] [Indexed: 12/20/2022]
Abstract
The Protein Circular Dichroism Data Bank (PCDDB) [https://pcddb.cryst.bbk.ac.uk] is an established resource for the biological, biophysical, chemical, bioinformatics, and molecular biology communities. It is a freely-accessible repository of validated protein circular dichroism (CD) spectra and associated sample and other metadata, with entries having links to other bioinformatics resources including, amongst others, structure (PDB) and sequence (UniProt) databases, as well as to published papers which produced the data and cite the database entries. It includes primary (unprocessed) and final (processed) spectral data, which are available in both text and pictorial formats, as well as detailed sample and validation information produced for each of the entries. Recently the metadata content associated with each of the entries, as well as the number and structural breadth of the protein components included, have been expanded. The PCDDB includes data on both wild-type and mutant proteins, and because CD studies primarily examine proteins in solution, it also contains examples of the effects of different environments on their structures, plus thermal unfolding/folding series. Methods for both sequence and spectral comparisons are included. The data included in the PCDDB complement results from crystal, cryo-electron microscopy, NMR spectroscopy, bioinformatics characterisations and classifications, and other structural information available for the proteins via links to other databases. The entries in the PCDDB have been used for the development of new analytical methodologies, for interpreting spectral and other biophysical data, and for providing insight into structures and functions of individual soluble and membrane proteins and protein complexes.
Collapse
Affiliation(s)
- Sergio Gomes Ramalli
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Andrew John Miles
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Robert W Janes
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK.
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|
5
|
Marzolf DR, McKenzie AM, O’Malley MC, Ponomarenko NS, Swaim CM, Brittain TJ, Simmons NL, Pokkuluri PR, Mulfort KL, Tiede DM, Kokhan O. Mimicking Natural Photosynthesis: Designing Ultrafast Photosensitized Electron Transfer into Multiheme Cytochrome Protein Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2143. [PMID: 33126541 PMCID: PMC7693585 DOI: 10.3390/nano10112143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 05/02/2023]
Abstract
Efficient nanomaterials for artificial photosynthesis require fast and robust unidirectional electron transfer (ET) from photosensitizers through charge-separation and accumulation units to redox-active catalytic sites. We explored the ultrafast time-scale limits of photo-induced charge transfer between a Ru(II)tris(bipyridine) derivative photosensitizer and PpcA, a 3-heme c-type cytochrome serving as a nanoscale biological wire. Four covalent attachment sites (K28C, K29C, K52C, and G53C) were engineered in PpcA enabling site-specific covalent labeling with expected donor-acceptor (DA) distances of 4-8 Å. X-ray scattering results demonstrated that mutations and chemical labeling did not disrupt the structure of the proteins. Time-resolved spectroscopy revealed three orders of magnitude difference in charge transfer rates for the systems with otherwise similar DA distances and the same number of covalent bonds separating donors and acceptors. All-atom molecular dynamics simulations provided additional insight into the structure-function requirements for ultrafast charge transfer and the requirement of van der Waals contact between aromatic atoms of photosensitizers and hemes in order to observe sub-nanosecond ET. This work demonstrates opportunities to utilize multi-heme c-cytochromes as frameworks for designing ultrafast light-driven ET into charge-accumulating biohybrid model systems, and ultimately for mimicking the photosynthetic paradigm of efficiently coupling ultrafast, light-driven electron transfer chemistry to multi-step catalysis within small, experimentally versatile photosynthetic biohybrid assemblies.
Collapse
Affiliation(s)
- Daniel R. Marzolf
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| | - Aidan M. McKenzie
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| | - Matthew C. O’Malley
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| | - Nina S. Ponomarenko
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA; (N.S.P.); (K.L.M.); (D.M.T.)
| | - Coleman M. Swaim
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| | - Tyler J. Brittain
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| | - Natalie L. Simmons
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA;
| | | | - Karen L. Mulfort
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA; (N.S.P.); (K.L.M.); (D.M.T.)
| | - David M. Tiede
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA; (N.S.P.); (K.L.M.); (D.M.T.)
| | - Oleksandr Kokhan
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| |
Collapse
|