1
|
Belyaeva NE, Bulychev AA, Klementiev KE, Paschenko VZ, Riznichenko GY, Rubin AB. Comparative modeling of fluorescence and P700 induction kinetics for alga Scenedesmus sp. obliques and cyanobacterium Synechocystis sp. PCC 6803. Role of state 2-state 1 transitions and redox state of plastoquinone pool. Cell Biochem Biophys 2024; 82:729-745. [PMID: 38340281 DOI: 10.1007/s12013-024-01224-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
The model of thylakoid membrane system (T-M model) (Belyaeva et al. Photosynth Res 2019, 140:1-19) has been improved in order to analyze the induction data for dark-adapted samples of algal (Scenedesmus obliques) and cyanobacterial (Synechocystis sp. PCC 6803) cells. The fluorescence induction (FI) curves of Scenedesmus were measured at light exposures of 5 min, while FI and P700 redox transformations of Synechocystis were recorded in parallel for 100 s intervals. Kinetic data comprising the OJIP-SMT fluorescence induction and OABCDEF P700+ absorbance changes were used to study the processes underlying state transitions qT2→1 and qT1→2 associated with the increase/decrease in Chl fluorescence emission. A formula with the Hill kinetics (Ebenhöh et al. Philos Trans R Soc B 2014, 369:20130223) was introduced into the T-M model, with a new variable to imitate the flexible size of antenna AntM(t) associated with PSII. Simulations revealed that the light-harvesting capacity of PSII increases with a corresponding decrease for that of PSI upon the qT2→1 transition induced by plastoquinone (PQ) pool oxidation. The complete T-M model fittings were attained on Scenedesmus or Synechocystis fast waves OJIPS of FI, while SMT wave of FI was reproduced at intervals shorter than 5 min. Also the fast P700 redox transitions (OABC) for Synechocystis were fitted exactly. Reasonable sets of algal and cyanobacterial electron/proton transfer (ET/PT) parameters were found. In the case of Scenedesmus, ET/PT traits remained the same irrespective of modeling with or without qT2→1 transitions. Simulations indicated a high extent (20%) of the PQ pool reduction under dark conditions in Synechocystis compared to 2% in Scenedesmus.
Collapse
Affiliation(s)
- N E Belyaeva
- Biological Faculty, Moscow State University, Moscow, 119234, Russia.
| | - A A Bulychev
- Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - K E Klementiev
- Biological Faculty, Moscow State University, Moscow, 119234, Russia
- Biological Faculty, Shenzhen MSU-BIT University, Shenzhen, 518172, China
| | - V Z Paschenko
- Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - G Yu Riznichenko
- Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - A B Rubin
- Biological Faculty, Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
2
|
Riznichenko GY, Belyaeva NE, Kovalenko IB, Antal TK, Goryachev SN, Maslakov AS, Plyusnina TY, Fedorov VA, Khruschev SS, Yakovleva OV, Rubin AB. Mathematical Simulation of Electron Transport in the Primary Photosynthetic Processes. BIOCHEMISTRY (MOSCOW) 2022; 87:1065-1083. [DOI: 10.1134/s0006297922100017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Belyaeva NE, Bulychev AA, Paschenko VZ, Klementiev KE, Ermachenko PA, Konyukhov IV, Riznichenko GY, Rubin AB. Dynamics of In Vivo Membrane Processes in Algal Thylakoids as Analyzed from Chlorophyll Fluorescence Induction using the Photosystem II and Thylakoid Models. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922050050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
4
|
Riznichenko GY, Antal TK, Belyaeva NE, Khruschev SS, Kovalenko IB, Maslakov AS, Plyusnina TY, Fedorov VA, Rubin AB. Molecular, Brownian, kinetic and stochastic models of the processes in photosynthetic membrane of green plants and microalgae. Biophys Rev 2022; 14:985-1004. [PMID: 36124262 PMCID: PMC9481862 DOI: 10.1007/s12551-022-00988-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/25/2022] [Indexed: 10/15/2022] Open
Abstract
The paper presents the results of recent work at the Department of Biophysics of the Biological Faculty, Lomonosov Moscow State University on the kinetic and multiparticle modeling of processes in the photosynthetic membrane. The detailed kinetic models and the rule-based kinetic Monte Carlo models allow to reproduce the fluorescence induction curves and redox transformations of the photoactive pigment P700 in the time range from 100 ns to dozens of seconds and make it possible to reveal the role of individual carriers in their formation for different types of photosynthetic organisms under different illumination regimes, in the presence of inhibitors, under stress conditions. The fitting of the model curves to the experimental data quantifies the reaction rate constants that cannot be directly measured experimentally, including the non-radiative thermal relaxation reactions. We use the direct multiparticle models to explicitly describe the interactions of mobile photosynthetic carrier proteins with multienzyme complexes both in solution and in the biomembrane interior. An analysis of these models reveals the role of diffusion and electrostatic factors in the regulation of electron transport, the influence of ionic strength and pH of the cellular environment on the rate of electron transport reactions between carrier proteins. To describe the conformational intramolecular processes of formation of the final complex, in which the actual electron transfer occurs, we use the methods of molecular dynamics. The results obtained using kinetic and molecular models supplement our knowledge of the mechanisms of organization of the photosynthetic electron transport processes at the cellular and molecular levels.
Collapse
Affiliation(s)
- Galina Yu. Riznichenko
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| | - Taras K. Antal
- Laboratory of Integrated Environmental Research, Pskov State University, Lenin Sq. 2, 180000 Pskov, Russia
| | - Natalia E. Belyaeva
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| | - Sergey S. Khruschev
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| | - Ilya B. Kovalenko
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| | - Alexey S. Maslakov
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| | - Tatyana Yu Plyusnina
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| | - Vladimir A. Fedorov
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| | - Andrey B. Rubin
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| |
Collapse
|