1
|
Hashemi SMB, Jafarpour D. Lactic acid fermentation of guava juice: Evaluation of nutritional and bioactive properties, enzyme (α-amylase, α-glucosidase, and angiotensin-converting enzyme) inhibition abilities, and anti-inflammatory activities. Food Sci Nutr 2023; 11:7638-7648. [PMID: 38107144 PMCID: PMC10724607 DOI: 10.1002/fsn3.3683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 12/19/2023] Open
Abstract
In the present research, the impact of fermentation with two strains of Lactiplantibacillus plantarum subsp. plantarum (PTCC 1896 and PTCC 1745) on physicochemical properties, antioxidant bioactive compounds, and some health-promoting features of guava juice was investigated. Results showed a significant (p < .05) decrease in pH, total soluble solids, glucose and fructose residues, vitamin C, and total carotenoids after 32 h of fermentation. Total phenolic content, free radical scavenging abilities, and ferrous reducing power were markedly enhanced during the fermentation process. Moreover, fermented juice represented good enzyme inhibition abilities (α-amylase and α-glucosidase) and anti-inflammatory activities. The initial amount of angiotensin-converting enzyme inhibitory activity (26.5%) increased to 72.1% and 66.4% in L. plantarum subsp. plantarum 1896 and L. plantarum subsp. plantarum 1745 treatments, respectively. These findings reveal that guava juice fermentation with the studied Lactobacillus strains can be a promising strategy to augment the functional properties of the fruit-based beverage.
Collapse
Affiliation(s)
| | - Dornoush Jafarpour
- Department of Food Science and Technology, Faculty of Agriculture, Fasa BranchIslamic Azad UniversityFasaIran
| |
Collapse
|
2
|
Moloto MR, Akinola SA, Seke F, Shoko T, Sultanbawa Y, Shai JL, Remize F, Sivakumar D. Influence of Fermentation on Functional Properties and Bioactivities of Different Cowpea Leaf Smoothies during In Vitro Digestion. Foods 2023; 12:foods12081701. [PMID: 37107496 PMCID: PMC10137366 DOI: 10.3390/foods12081701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
This study investigated the effects of Lactiplantibacillus plantarum 75 (LAB 75) fermentation at 37 °C for 48 h on the pH, total soluble solids (TSS), colour, total titratable acidity (TTA), carotenoids, and bioactivities of cowpea leaf smoothies from three cultivars (VOP 1, VOP 3, and VOP 4). Fermentation reduced the pH from 6.57 to 5.05 after 48 h. The TTA increased with the fermentation period, whilst the TSS reduced. Fermentation of the smoothies resulted in the least colour changes (∆E) in VOP 1 after 48 h. Fermentation of cowpea smoothies (VOP 1, VOP 3, and VOP 4) improved the antioxidant capacity (FRAP, DPPH, and ABTS), which was attributed to the increase in total phenolic compounds and carotenoid constituents in all of the fermented cowpea smoothies. VOP 1 was further selected for analysis due to its high phenolic content and antioxidant activity. The VOP 1 smoothie fermented for 24 h showed the lowest reduction in TPC (11%) and had the highest antioxidant (FRAP, DPPH, and ABTS) activity. Ltp. plantarum 75 was viable and survived the harsh conditions of the gastrointestinal tract, and, hence, could be used as a probiotic. VOP 1 intestinal digesta showed significantly higher glucose uptake relative to the undigested and the gastric digesta, while the gastric phase had higher levels of α-amylase and α-glucosidase compared to the undigested samples.
Collapse
Affiliation(s)
- Mapula R Moloto
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria 0001, South Africa
| | - Stephen A Akinola
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria 0001, South Africa
| | - Faith Seke
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria 0001, South Africa
| | - Tinotenda Shoko
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria 0001, South Africa
| | - Yasmina Sultanbawa
- Australian Research Council Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, Centre for Food Science and Nutrition, The University of Queensland, Elkhorn Building (#1024), 80 Meiers Road, Indooroopilly, Brisbane, QLD 4068, Australia
| | - Jerry L Shai
- Department of Biomedical Sciences, Tshwane University of Technology, Arcadia, Pretoria 0001, South Africa
| | - Fabienne Remize
- SPO, Université de Montpellier, Université de La Réunion, Institut Agro, INRAE, 2 Place Viala, F-34000 Montpellier, France
| | - Dharini Sivakumar
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria 0001, South Africa
- Australian Research Council Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, Centre for Food Science and Nutrition, The University of Queensland, Elkhorn Building (#1024), 80 Meiers Road, Indooroopilly, Brisbane, QLD 4068, Australia
| |
Collapse
|
3
|
Pereira N, Farrokhi M, Vida M, Lageiro M, Ramos AC, Vieira MC, Alegria C, Gonçalves EM, Abreu M. Valorisation of Wasted Immature Tomato to Innovative Fermented Functional Foods. Foods 2023; 12:foods12071532. [PMID: 37048352 PMCID: PMC10094284 DOI: 10.3390/foods12071532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
In this study, the lactic fermentation of immature tomatoes as a tool for food ingredient production was evaluated as a circular economy-oriented alternative for valorising industrial tomatoes that are unsuitable for processing and which have wasted away in large quantities in the field. Two lactic acid bacteria (LAB) were assessed as starter cultures in an immature tomato pulp fermentation to produce functional food ingredients with probiotic potential. The first trial evaluated the probiotic character of Lactiplantibacillus plantarum (LAB97, isolated from immature tomato microbiota) and Weissella paramesenteroides (C1090, from the INIAV collection) through in vitro gastrointestinal digestion simulation. The results showed that LAB97 and C1090 met the probiotic potential viability criterion by maintaining 6 log10 CFU/mL counts after in vitro simulation. The second trial assessed the LAB starters’ fermentative ability. Partially decontaminated (110 °C/2 min) immature tomato pulp was used to prepare the individually inoculated samples (Id: LAB97 and C1090). Non-inoculated samples, both with and without thermal treatment (Id: CTR-TT and CTR-NTT, respectively), were prepared as the controls. Fermentation was undertaken (25 °C, 100 rpm) for 14 days. Throughout storage (0, 24, 48, 72 h, 7, and 14 days), all the samples were tested for LAB and Y&M counts, titratable acidity (TA), solid soluble content (SSC), total phenolic content (TPC), antioxidant capacity (AOx), as well as for organic acids and phenolic profiles, and CIELab colour and sensory evaluation (14th day). The LAB growth reached ca. 9 log10 CFU/mL for all samples after 72 h. The LAB97 samples had an earlier and higher acidification rate than the remaining ones, and they were highly correlated to lactic acid increments. The inoculated samples showed a faster and higher decrease rate in their SSC levels when compared to the controls. A nearly two-fold increase (p < 0.05) during the fermentation, over time, was observed in all samples’ AOx and TPC (p < 0.05, r = 0.93; similar pattern). The LAB97 samples obtained the best sensory acceptance for flavour and overall appreciation scores when compared to the others. In conclusion, the L. plantarum LAB97 starter culture was selected as a novel probiotic candidate to obtain a potential probiotic ingredient from immature tomato fruits.
Collapse
Affiliation(s)
- Nelson Pereira
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal
| | - Mahsa Farrokhi
- Instituto Superior de Engenharia, Universidade do Algarve, 8005-139 Faro, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE—Global and Sustainability Institute, Faculty of Science and Technology, Universidade do Algarve, Campus de Gambelas, 8005-310 Faro, Portugal
| | - Manuela Vida
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal
| | - Manuela Lageiro
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, FCT-UNL, 2829-516 Caparica, Portugal
| | - Ana Cristina Ramos
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, FCT-UNL, 2829-516 Caparica, Portugal
| | - Margarida C. Vieira
- Instituto Superior de Engenharia, Universidade do Algarve, 8005-139 Faro, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE—Global and Sustainability Institute, Faculty of Science and Technology, Universidade do Algarve, Campus de Gambelas, 8005-310 Faro, Portugal
| | - Carla Alegria
- cE3c—Centre for Ecology, Evolution and Environmental Changes, CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Elsa M. Gonçalves
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, FCT-UNL, 2829-516 Caparica, Portugal
| | - Marta Abreu
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| |
Collapse
|
4
|
The Influence of Lactic Acid Bacteria Fermentation on the Bioactivity of Crayfish (Faxonius limosus) Meat. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In recent years, new raw materials have been sought for use in processing. This category certainly includes invasive crayfish Faxonius limosus. One of the problems associated with their use is their short microbiological shelf life. Therefore, in the research presented here, an attempt was made to ferment crayfish meat with strains of Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, Lactobacillus casei, and yogurt culture. The analyses included an evaluation of changes in the microbial quality of the material, the content of free amino acids, reducing sugars, ascorbic acid, and the antioxidant properties of the fermented meat. Changes in the canthaxanthin content and the number of sulfhydryl groups and disulfide bridges were also evaluated. The study showed that carrying out lactic fermentation resulted in a decrease in meat pH (8.00 to 7.35–6.94, depending on the starter culture). Moreover, the meat was characterized by an increase in FRAP (2.99 to 3.60–4.06 mg AAE/g), ABTS (2.15 to 2.85–3.50 μmol Trolox/g), and reducing power (5.53 to 6.28–14.25 μmol Trolox/g). In addition, the study showed a favorable effect of fermentation on the content of sulfhydryl groups in the meat as well as for ascorbic acid content. The results obtained can serve as a starting point for the further development of fermented products based on crayfish meat.
Collapse
|
5
|
Mahanta S, Sivakumar PS, Parhi P, Mohapatra RK, Dey G, Panda SH, Sireswar S, Panda SK. Sour beer production in India using a coculture of Saccharomyces pastorianus and Lactobacillus plantarum: optimization, microbiological, and biochemical profiling. Braz J Microbiol 2022; 53:947-958. [PMID: 35129817 PMCID: PMC9151955 DOI: 10.1007/s42770-022-00691-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
The study's objective was to develop a co-fermentation process with appropriate fermentation parameters to produce a sour beer (similar to a Belgium sour beer) with an ethanol content of 6-8% (v/v) using a coculture of Saccharomyces pastorianus and Lactobacillus plantarum. Statistical optimization was conducted to determine fermentation conditions to produce a sour beer with ~ 3 mg/mL of lactic acid, similar to the traditional sour beer levels. Studies were conducted on the microbial dynamics and volatile compounds produced during this fermentation and aging process. GC-MS studies revealed the generation of novel bioactive compounds as well as the depletion of some volatile compounds during co-fermentation. The study detailed a 5-day co-fermentation process of S. pastorianus and L. plantarum and a 21-day aging process to prepare a sour beer with biochemical properties along the lines of traditional lambic beers. The interrelationship between the two microorganisms and the biochemical changes in the sour beer fermentation process was elucidated and the sensorial attributes have been described.
Collapse
Affiliation(s)
- Sachin Mahanta
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India
| | - P S Sivakumar
- Division of Extension and Social Sciences, Central Tuber Crops Research Institute, Trivandrum, Kerala, India
| | - Pankaj Parhi
- P. G. Department of Chemistry, Fakir Mohan University, Balasore-756089, Odisha, India
| | - Ranjan K Mohapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India
| | - Gargi Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India
| | - Smita H Panda
- Department of Zoology, North Orissa University, Mayurbhanj, Odisha, India
| | - Srijita Sireswar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India
| | - Sandeep K Panda
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
6
|
Kowalczewski PŁ, Olejnik A, Świtek S, Bzducha-Wróbel A, Kubiak P, Kujawska M, Lewandowicz G. Bioactive compounds of potato ( Solanum tuberosum L.) juice: from industry waste to food and medical applications. CRITICAL REVIEWS IN PLANT SCIENCES 2022; 41:52-89. [DOI: 10.1080/07352689.2022.2057749] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Affiliation(s)
| | - Anna Olejnik
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Stanisław Świtek
- Department of Agronomy, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Bzducha-Wróbel
- Department of Food Biotechnology and Microbiology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Kubiak
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - Grażyna Lewandowicz
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
7
|
Viability of Lactobacillus rhamnosus GG in provitamin A cassava hydrolysate during fermentation, storage, in vitro and in vivo gastrointestinal conditions. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
The Functional Properties of Lactobacillus casei HY2782 Are Affected by the Fermentation Time. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Maintaining probiotic effectiveness represents the most important task for the development of functional foods. Gastrointestinal stability and intestinal adhesion properties comprise one criterion for probiotic selection. Here, we investigated the benefits of milk fermented with Lactobacillus casei HY2782 at different fermentation times. The probiotic strain used was L. casei HY2782 and the reference strain was L. casei ATCC393 for comparisons. The samples were fermented for 7 days at 30 °C. We determined the pH, CFU/mL, survival rate during simulated gastrointestinal digestion, adhesion ability to HT-29 cells, and gene expression of tight-junction proteins known to regulate intestinal permeability in Caco-2 cells. L. casei HY2782 exhibited significantly higher survival rates in simulated gastrointestinal digestion during long-term fermentation than L. casei ATCC393. The adhesion ability to HT-29 cells was significantly increased with L. casei HY2782 (3.3% to 8.7%) after 7 days of fermentation; however, only a slight increase was observed for L. casei ATCC393 (3.1% to 4.7%). In addition, L. casei HY2782 can significantly increase the expression of genes encoding tight-junction proteins during long-term fermentation of milk. In conclusion, we confirmed that long-term fermentation could be a novel manufacturing process for fermented milk containing L. casei HY2782 and showed the beneficial effects.
Collapse
|
9
|
P V, Dash SK, Rayaguru K. Post-Harvest Processing and Utilization of Sweet Potato: A Review. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1600540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Vithu P
- Department of Agricultural Processing and Food Engineering, College of Agricultural Engineering and Technology, OUAT, Bhubaneswar, India
| | - Sanjaya K Dash
- College of Agricultural Engineering and Technology, OUAT, Bhubaneswar, India
| | - Kalpana Rayaguru
- Department of Agricultural Processing and Food Engineering, College of Agricultural Engineering and Technology, OUAT, Bhubaneswar, India
| |
Collapse
|
10
|
Biochemical analysis of elephant foot yam (Amorphophallus paeoniifolius) lacto-pickle with probiotic Lactobacillus plantarum. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
11
|
Ajayi OI, Okedina TA, Samuel AE, Asieba GO, Jegede AA, Onyemali CP, Ehiwuogu-Onyibe J, Lawal AK, Elemo GN. Evaluation of starter culture fermented sweet potato flour using FTIR spectra and GCMS Chromatogram. ACTA ACUST UNITED AC 2019. [DOI: 10.5897/ajmr2017.8774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Evaluation of the hepatoprotective effect of combination between fermented camel milk and Rosmarinus officinalis leaves extract against CCl 4 induced liver toxicity in mice. Journal of Food Science and Technology 2019; 56:824-834. [PMID: 30906040 DOI: 10.1007/s13197-018-3542-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/10/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022]
Abstract
The present study was conducted to evaluate the in vitro antioxidant activity of fermented camel milk with Lactococcus lactis subsp. cremoris (FCM-LLC) alone, Rosmarinus officinalis extract (R) alone and their combination and to investigate their hepatopreventive effects against CCl4 liver damage in mice. The antioxidant activity in vitro of FMC-LLC supplemented with R exhibited the highest free radical scavenging and ferric reducing power activities. The results showed that the pretreatment with a combination of FMC-LLC and R significantly alleviated the increased levels of hepatic markers and the elevated lipid levels induced by CCl4 in mice. Meanwhile, the enzymatic antioxidants activities (superoxide dismutase, glutathione peroxidase, and catalase) and GSH level in liver significantly were increased while the malondialdehyde level was significantly improved by pretreatment with FMLLC plus R. These data suggest that FCM-LLC in combination with R. officinalis extract possesses better antioxidant and hepatoprotective activity than FMC-LLC alone.
Collapse
|
13
|
Genetic diversity and antimicrobial activity of lactic acid bacteria in the preparation of traditional fermented potato product 'tunta'. World J Microbiol Biotechnol 2018; 34:144. [PMID: 30203322 DOI: 10.1007/s11274-018-2525-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 08/26/2018] [Indexed: 10/28/2022]
Abstract
Fermentation microorganisms, lactic acid bacteria (LAB) and yeast from 12 samples of tunta production chain were quantified, from the native potatoes used by the process fermentation of potatoes in the river up to the final product. During fermentation, the LAB population steadily increased from 3 to 4 to 8 log CFU/g during the first 8 days in the river and the yeast population increased from 2 to 3 to 3-4 log CFU/g. Overall, 115 LAB strains were isolated using a culture-dependent method. Molecular techniques and 16S rRNA gene sequencing enabled the identification of native species. In LAB isolates, members of the Lactobacillaceae (64%), Leuconostocaceae (9%) and Enterococcaceae (2%) families were identified. The most prevalent LAB species in the tunta production chain was Lactobacillus curvatus, followed by Leuconostoc mesenteroides and Lactobacillus sakei, Lactobacillus brevis and Enterococcus mundtii were also present. Only 13 LAB strains showed anti-listerial activity, and one of them, identified as En. mundtii DSM 4838T [MG031213], produced antimicrobial compounds that were determined to be proteins after treatment with proteolytic enzymes. Based on these results, we suggest that traditional fermented product-derived LAB strains from specific environments could be selected and used for technological application to control pathogenic bacteria and naturally protect food from post-harvest deleterious microbiota.
Collapse
|
14
|
Behera SS, Ray RC, Zdolec N. Lactobacillus plantarum with Functional Properties: An Approach to Increase Safety and Shelf-Life of Fermented Foods. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9361614. [PMID: 29998137 PMCID: PMC5994577 DOI: 10.1155/2018/9361614] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022]
Abstract
Lactobacillus plantarum (widespread member of the genus Lactobacillus) is one of the most studied species extensively used in food industry as probiotic microorganism and/or microbial starter. The exploitation of Lb. plantarum strains with their long history in food fermentation forms an emerging field and design of added-value foods. Lb. plantarum strains were also used to produce new functional (traditional/novel) foods and beverages with improved nutritional and technological features. Lb. plantarum strains were identified from many traditional foods and characterized for their systematics and molecular taxonomy, enzyme systems (α-amylase, esterase, lipase, α-glucosidase, β-glucosidase, enolase, phosphoketolase, lactase dehydrogenase, etc.), and bioactive compounds (bacteriocin, dipeptides, and other preservative compounds). This review emphasizes that the Lb. plantarum strains with their probiotic properties can have great effects against harmful microflora (foodborne pathogens) to increase safety and shelf-life of fermented foods.
Collapse
Affiliation(s)
- Sudhanshu S. Behera
- Department of Fisheries and Animal Resources Development, Government of Odisha, Bhubaneswar, India
- Centre for Food Biology Studies, 1071/17 Jagamohan Nagar, Khandagiri PO, Bhubaneswar 751 030, Odisha, India
| | - Ramesh C. Ray
- Centre for Food Biology Studies, 1071/17 Jagamohan Nagar, Khandagiri PO, Bhubaneswar 751 030, Odisha, India
| | - Nevijo Zdolec
- Department of Hygiene, Technology and Food Safety, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| |
Collapse
|
15
|
Behera SS, Panda SH, Mohapatra S, Kumar A. Statistical optimization of elephant foot yam (Amorphophallus paeoniifolius) lacto-pickle for maximal yield of lactic acid. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Valero-Cases E, Frutos MJ. Effect of Inulin on the Viability of L. plantarum during Storage and In Vitro Digestion and on Composition Parameters of Vegetable Fermented Juices. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2017; 72:161-167. [PMID: 28161879 DOI: 10.1007/s11130-017-0601-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The prebiotic effect of different concentrations of inulin (0, 1 and 2%) on the growth and survival of Lactobacillus plantarum (LP) CECT 220 in blended carrot and orange juices was investigated after 24 h of fermentation, during 30 days of storage at 4 °C and through the phases of gastrointestinal digestion after different storage periods. Microbiological and chemical determinations were also carried out in all juices. The lactic fermentation increased the shelf life of the fermented juices with inulin. The hygienic-sanitary quality in fermented juices was better than the control juices. During storage, the inulin improved the viability of LP and the monosaccharide concentration remained higher with respect to the juice without inulin (40% lower). At 30 days, the fermented juices with 2% inulin after in vitro digestion presented the highest survival of L. plantarum.
Collapse
Affiliation(s)
- Estefanía Valero-Cases
- Agro-Food Technology Department, Miguel Hernández University, Ctra. Beniel, Km. 3.2, 03312, Orihuela, Alicante, Spain
| | - María José Frutos
- Agro-Food Technology Department, Miguel Hernández University, Ctra. Beniel, Km. 3.2, 03312, Orihuela, Alicante, Spain.
| |
Collapse
|
17
|
Abstract
Sweet potato (Ipomoea batatas L.) is among the major food crops in the world and is cultivated in all tropical and subtropical regions particularly in Asia, Africa, and the Pacific. Asia and Africa regions account for 95% of the world's production. Among the root and tuber crops grown in the world, sweet potato ranks second after cassava. In previous decades, sweet potato represented food and feed security, now it offers income generation possibilities, through bioprocessing products. Bioprocessing of sweet potato offers novel opportunities to commercialize this crop by developing a number of functional foods and beverages such as sour starch, lacto-pickle, lacto-juice, soy sauce, acidophilus milk, sweet potato curd and yogurt, and alcoholic drinks through either solid state or submerged fermentation. Sweet potato tops, especially leaves are preserved as hay or silage. Sweet potato flour and bagassae are used as substrates for production of microbial protein, enzymes, organic acids, monosodium glutamate, chitosan, etc. Additionally, sweet potato is a promising candidate for production of bioethanol. This review deals with the development of various products from sweet potato by application of bioprocessing technology. To the best of our knowledge, there is no review paper on the potential impacts of the sweet potato bioprocessing.
Collapse
Affiliation(s)
- Aly Farag El Sheikha
- a Department of Biology , McMaster University , Hamilton Ontario , Canada.,b Faculty of Agriculture, Department of Food Science and Technology , Minufiya University, Minufiya Government , Egypt.,c Regional Centre, Central Tuber Crops Research Institute , Bhubaneswar , India
| | - Ramesh C Ray
- c Regional Centre, Central Tuber Crops Research Institute , Bhubaneswar , India
| |
Collapse
|
18
|
Panda SK, Behera SK, Witness Qaku X, Sekar S, Ndinteh DT, Nanjundaswamy H, Ray RC, Kayitesi E. Quality enhancement of prickly pears ( Opuntia sp.) juice through probiotic fermentation using Lactobacillus fermentum - ATCC 9338. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.09.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Liu Q, Shao T, Bai Y. The effect of fibrolytic enzyme, Lactobacillus plantarum and two food antioxidants on the fermentation quality, alpha-tocopherol and beta-carotene of high moisture napier grass silage ensiled at different temperatures. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.08.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Chwastek A, Klewicka E, Klewicki R, Sójka M. Lactic Acid Fermentation of Red Beet Juice Supplemented with Waste Highbush Blueberry-Sucrose Osmotic Syrup as a Method of Probiotic Beverage Production. J FOOD PROCESS PRES 2015. [DOI: 10.1111/jfpp.12659] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anna Chwastek
- Institute of Food Technology and Analysis; Lodz University of Technology; Stefanowskiego 4/10 Łódź 90-924 Poland
| | - Elżbieta Klewicka
- Institute of Fermentation Technology and Microbiology; Lodz University of Technology; Stefanowskiego 4/10 Łódź 90-924 Poland
| | - Robert Klewicki
- Institute of Food Technology and Analysis; Lodz University of Technology; Stefanowskiego 4/10 Łódź 90-924 Poland
| | - Michał Sójka
- Institute of Food Technology and Analysis; Lodz University of Technology; Stefanowskiego 4/10 Łódź 90-924 Poland
| |
Collapse
|
21
|
Lactic acid bacteria-mediated fermentation of Cudrania tricuspidata leaf extract improves its antioxidative activity, osteogenic effects, and anti-adipogenic effects. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-015-0302-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Swain MR, Anandharaj M, Ray RC, Parveen Rani R. Fermented fruits and vegetables of Asia: a potential source of probiotics. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2014; 2014:250424. [PMID: 25343046 PMCID: PMC4058509 DOI: 10.1155/2014/250424] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/30/2014] [Indexed: 11/17/2022]
Abstract
As world population increases, lactic acid fermentation is expected to become an important role in preserving fresh vegetables, fruits, and other food items for feeding humanity in developing countries. However, several fermented fruits and vegetables products (Sauerkraut, Kimchi, Gundruk, Khalpi, Sinki, etc.) have a long history in human nutrition from ancient ages and are associated with the several social aspects of different communities. Among the food items, fruits and vegetables are easily perishable commodities due to their high water activity and nutritive values. These conditions are more critical in tropical and subtropical countries which favour the growth of spoilage causing microorganisms. Lactic acid fermentation increases shelf life of fruits and vegetables and also enhances several beneficial properties, including nutritive value and flavours, and reduces toxicity. Fermented fruits and vegetables can be used as a potential source of probiotics as they harbour several lactic acid bacteria such as Lactobacillus plantarum, L. pentosus, L. brevis, L. acidophilus, L. fermentum, Leuconostoc fallax, and L. mesenteroides. As a whole, the traditionally fermented fruits and vegetables not only serve as food supplements but also attribute towards health benefits. This review aims to describe some important Asian fermented fruits and vegetables and their significance as a potential source of probiotics.
Collapse
Affiliation(s)
- Manas Ranjan Swain
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Marimuthu Anandharaj
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | | | - Rizwana Parveen Rani
- Gandhigram Rural Institute-Deemed University, Gandhigram, Tamil Nadu 624302, India
| |
Collapse
|
23
|
Cerrillo I, Escudero-López B, Hornero-Méndez D, Martín F, Fernández-Pachón MS. Effect of alcoholic fermentation on the carotenoid composition and provitamin A content of orange juice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:842-849. [PMID: 24410283 DOI: 10.1021/jf404589b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Orange juice is considered a rich source of carotenoids, which are thought to have diverse biological functions. In recent years, a fermentation process has been carried out in fruits resulting in products that provide higher concentrations of bioactive compounds than their original substrates. The aim of this study was to evaluate the effect of a controlled alcoholic fermentation process (15 days) on the carotenoid composition of orange juice. Twenty-two carotenoids were identified in samples. The carotenoid profile was not modified as result of the fermentation. Total carotenoid content and provitamin A value significantly increased from day 0 (5.37 mg/L and 75.32 RAEs/L, respectively) until day 15 (6.65 mg/L and 90.57 RAEs/L, respectively), probably due to a better extractability of the carotenoids from the food matrix as a result of processing. Therefore, the novel beverage produced could provide a rich source of carotenoids and exert healthy effects similar to those of orange juice.
Collapse
Affiliation(s)
- Isabel Cerrillo
- Área de Nutrición y Bromatologı́a, Departamento de Biologı́a Molecular e Ingenierı́a Bioquı́mica, Universidad Pablo de Olavide , Carretera de Utrera Km 1, E-41013 Sevilla, Spain
| | | | | | | | | |
Collapse
|
24
|
JENG TL, HO PT, SHIH YJ, LAI CC, SUNG JM. Chemicals Contents in Non-alcoholic and Alcoholic Beverages Produced from Purple-fleshed and Orange-fleshed Sweet Potato Varieties. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2012. [DOI: 10.3136/fstr.18.639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Antioxidant properties of Lactobacillus-fermented and non-fermented Graptopetalum paraguayense E. Walther at different stages of maturity. Food Chem 2011; 129:804-9. [PMID: 25212302 DOI: 10.1016/j.foodchem.2011.05.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 03/22/2011] [Accepted: 05/04/2011] [Indexed: 11/23/2022]
Abstract
Accumulation of bioactive compounds, during developmental stages of Graptopetalum paraguayense E. Walther, was investigated between 30 and 90days as a function of physiological maturity. Three distinct phases were defined: immature phase (30days), intermediate developmental phase (30-60days), and maturation phase (60-90days). Gallic acid and quercetin, antioxidative bioactive compounds, were identified as biomarkers for determining the optimum physiological maturity stage in G. paraguayense E. Walther. With regard to the antioxidant activity of G. paraguayense E. Walther at different developmental stages, the results indicated that the leaves of immature G. paraguayense E. Walther had the highest 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonate) (ABTS-), superoxide radical-, and 1,1-diphenyl-2-picrylhydrazyl (DPPH·)-scavenging activities. Fermentation of G. paraguayense E. Walther with Lactobacillus plantarum BCRC 10357 significantly increased the level of flavonoids and total phenolics, including quercetin and gallic acid. Total phenols were the major naturally occurring antioxidant components in lactic acid bacteria-fermented G. paraguayense E. Walther.
Collapse
|
26
|
Ray RC, Sivakumar PS. Traditional and novel fermented foods and beverages from tropical root and tuber crops: review. Int J Food Sci Technol 2009. [DOI: 10.1111/j.1365-2621.2009.01933.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Kun S, Rezessy-Szabó JM, Nguyen QD, Hoschke Á. Changes of microbial population and some components in carrot juice during fermentation with selected Bifidobacterium strains. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.03.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|