1
|
Xiang Y, Zou M, Ou F, Zhu L, Xu Y, Zhou Q, Lei C. A Comparison of the Impacts of Different Drying Methods on the Volatile Organic Compounds in Ginseng. Molecules 2024; 29:5235. [PMID: 39598624 PMCID: PMC11596846 DOI: 10.3390/molecules29225235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Ginseng (Panax ginseng C. A. Meyer) is a valuable plant resource which has been used for centuries as both food and traditional Chinese medicine. It is popular in health research and markets globally. Fresh ginseng has a high moisture content and is prone to mold and rot, reducing its nutritional value without proper preservation. Drying treatments are effective for maintaining the beneficial properties of ginseng post-harvest. In this study, we investigated the effects of natural air drying (ND), hot-air drying (HAD), vacuum drying (VD), microwave vacuum drying (MVD), and vacuum freeze drying (VFD) on volatile organic compounds (VOCs) in ginseng. The results showed that the MVD time was the shortest, followed by the VFD, VD, and HAD times, whereas the ND time was the longest, but the VFD is the most beneficial to the appearance and color retention of ginseng. A total of 72 VOCs were obtained and 68 VOCs were identified using the five drying methods based on gas chromatography-ion mobility spectrometry (GC-IMS) technology, including 23 aldehydes, 19 alkenes, 10 alcohols, 10 ketones, 4 esters, 1 furan, and 1 pyrazine, and the ND method was the best for retaining VOCs. GC-IMS fingerprints, principal component analysis (PCA), Euclidean distance analysis, partial least squares discriminant analysis (PLS-DA), and cluster analysis (CA) can distinguish ginseng from different drying methods. A total of 29 VOCs can be used as the main characteristic markers of different drying methods in ginseng. Overall, our findings provide scientific theoretical guidance for optimizing ginseng's drying methods, aromatic health effects, and flavor quality research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chang Lei
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.X.); (M.Z.); (F.O.); (L.Z.); (Y.X.); (Q.Z.)
| |
Collapse
|
2
|
Lin L, Tang R, Liu Y, Li Z, Li H, Yang H. Research on the anti-aging mechanisms of Panax ginseng extract in mice: a gut microbiome and metabolomics approach. Front Pharmacol 2024; 15:1415844. [PMID: 38966558 PMCID: PMC11222675 DOI: 10.3389/fphar.2024.1415844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction: Aged-related brain damage and gut microbiome disruption are common. Research affirms that modulating the microbiota-gut-brain axis can help reduce age-related brain damage. Methods: Ginseng, esteemed in traditional Chinese medicine, is recognized for its anti-aging capabilities. However, previous Ginseng anti-aging studies have largely focused on diseased animal models. To this end, efforts were hereby made to explore the potential neuroprotective effects of fecal microbiota transplantation (FMT) from Ginseng-supplemented aged mice to those pre-treated with antibiotics. Results: As a result, FMT with specific modifications in natural aging mice improved animal weight gain, extended the telomere length, anti-oxidative stress in brain tissue, regulated the serum levels of cytokine, and balanced the proportion of Treg cells. Besides, FMT increased the abundance of beneficial bacteria of Lachnospiraceae, Dubosiella, Bacteroides, etc. and decreased the levels of potential pathogenic bacteria of Helicobacter and Lachnoclostridium in the fecal samples of natural aged mice. This revealed that FMT remarkably reshaped gut microbiome. Additionally, FMT-treated aged mice showed increased levels of metabolites of Ursolic acid, β-carotene, S-Adenosylmethionine, Spermidine, Guanosine, Celecoxib, Linoleic acid, etc., which were significantly positively correlated with critical beneficial bacteria above. Additionally, these identified critical microbiota and metabolites were mainly enriched in the pathways of Amino acid metabolism, Lipid metabolism, Nucleotide metabolism, etc. Furthermore, FMT downregulated p53/p21/Rb signaling and upregulated p16/p14, ATM/synapsin I/synaptophysin/PSD95, CREB/ERK/AKT signaling in brain damage following natural aging. Discussion: Overall, the study demonstrates that reprogramming of gut microbiota by FMT impedes brain damage in the natural aging process, possibly through the regulation of microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiyong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
| | - Hongjun Yang
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Li H, Zhang B, Meng F, Shao S, Xia Y, Yao Y. Adsorption, natural attenuation, and microbial community response of ofloxacin and oxolinic acid in marine sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123738. [PMID: 38458522 DOI: 10.1016/j.envpol.2024.123738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The pollution of quinolone antibiotics in the marine environment has attracted widespread attention, especially for ofloxacin (OFL) and oxolinic acid (OXO) due to their frequent detection. However, few studies have been conducted to assess the behaviors and microbial community response to these antibiotics in marine sediments, particularly for potential antibiotic-resistant bacteria. In this work, the adsorption characteristics, natural attenuation characteristics, and variation of microbial communities of OFL and OXO in marine sediments were investigated. The adsorption process of antibiotics in sediments occurred on the surface and internal pores of organic matter, where OFL was more likely to be transferred from seawater to sediment compared with OXO. Besides, the adsorption of two antibiotics on sediment surfaces was attributed to physisorption (pore filling, electrostatic interaction) and chemisorption (hydrogen bonding). The natural attenuation of OFL and OXO in marine sediment followed second-order reaction kinetics with half-lives of 6.02 and 26.71 days, respectively, wherein biodegradation contributed the most to attenuation, followed by photolysis. Microbial community structure in marine sediments exposure to antibiotics varied by reducing abundance and diversity of microbial communities, as a whole displaying as an increase in the relative abundance of Firmicutes whereas a decrease of Proteobacteria. In detail, Escherichia-Shigella sp., Blautia sp., Bifidobacterium sp., and Bacillus sp. were those antibiotic-resistant bacteria with potential ability to degrade OFL, while Bacillus sp. may be resistant to OXO. Furthermore, functional predictions indicated that the microbial communities in sediment may resist the stress caused by OFL and OXO through cyano-amino acid metabolism, and ascorbate and aldarate metabolism, respectively. The research is key to understanding fate and bacterial resistance of antibiotics in marine sediments.
Collapse
Affiliation(s)
- Haiping Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Bo Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Siyuan Shao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yufan Xia
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yu Yao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
4
|
Huang F, Cao Y, Liang J, Tang R, Wu S, Zhang P, Chen R. The influence of the gut microbiome on ovarian aging. Gut Microbes 2024; 16:2295394. [PMID: 38170622 PMCID: PMC10766396 DOI: 10.1080/19490976.2023.2295394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Ovarian aging occurs prior to the aging of other organ systems and acts as the pacemaker of the aging process of multiple organs. As life expectancy has increased, preventing ovarian aging has become an essential goal for promoting extended reproductive function and improving bone and genitourinary conditions related to ovarian aging in women. An improved understanding of ovarian aging may ultimately provide tools for the prediction and mitigation of this process. Recent studies have suggested a connection between ovarian aging and the gut microbiota, and alterations in the composition and functional profile of the gut microbiota have profound consequences on ovarian function. The interaction between the gut microbiota and the ovaries is bidirectional. In this review, we examine current knowledge on ovary-gut microbiota crosstalk and further discuss the potential role of gut microbiota in anti-aging interventions. Microbiota-based manipulation is an appealing approach that may offer new therapeutic strategies to delay or reverse ovarian aging.
Collapse
Affiliation(s)
- Feiling Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Ying Cao
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Jinghui Liang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Ruiyi Tang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Si Wu
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Rare Disease Center, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| |
Collapse
|
5
|
Su J, Su Q, Hu S, Ruan X, Ouyang S. Research Progress on the Anti-Aging Potential of the Active Components of Ginseng. Nutrients 2023; 15:3286. [PMID: 37571224 PMCID: PMC10421173 DOI: 10.3390/nu15153286] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Aging is a cellular state characterized by a permanent cessation of cell division and evasion of apoptosis. DNA damage, metabolic dysfunction, telomere damage, and mitochondrial dysfunction are the main factors associated with senescence. Aging increases β-galactosidase activity, enhances cell spreading, and induces Lamin B1 loss, which further accelerate the aging process. It is associated with a variety of diseases, such as Alzheimer's disease, Parkinson's, type 2 diabetes, and chronic inflammation. Ginseng is a traditional Chinese medicine with anti-aging effects. The active components of ginseng, including saponins, polysaccharides, and active peptides, have antioxidant, anti-apoptotic, neuroprotective, and age-delaying effects. DNA damage is the main factor associated with aging, and the mechanism through which the active ingredients of ginseng reduce DNA damage and delay aging has not been comprehensively described. This review focuses on the anti-aging mechanisms of the active ingredients of ginseng. Furthermore, it broadens the scope of ideas for further research on natural products and aging.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Qiaofen Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shan Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Xinglin Ruan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China;
| | - Songying Ouyang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|