1
|
Geethamala GV, Swathilakshmi AV, Keerthana S, Vidhyanivetha D, Preethi G, Chitra P, Poonkothai M. Exploring the Potential of Nickel Oxide Nanoparticles Synthesized from Dictyota bartayresiana and its Biological Applications. Biol Trace Elem Res 2024; 202:4260-4278. [PMID: 38095844 DOI: 10.1007/s12011-023-03978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/26/2023] [Indexed: 07/18/2024]
Abstract
The present study validates the impact of nickel oxide nanoparticles (NiONPs) biosynthesized from the brown seaweed Dictyota bartayresiana (DB) and its biological applications. The phytochemicals analyzed in the seaweed extract served as a reducing, capping or stabilizing agent in the formation of nanoparticles. UV visible spectrum of nickel oxide nanoparticles synthesized from DB (DB-NiONPs) represented a prominent peak at 392 nm which validates its formation. Fourier Transmission Infrared Spectroscopy (FT-IR) showcased the presence of functional groups in the biomolecules which aids in the stabilization of DB-NiONPs. The X-ray diffractometry (XRD) revealed the crystalline nature of DB-NiONPs and the particle size was calculated as 18.26 nm. The Scanning electron microscope (SEM) illustrates the irregularly shaped DB-NiONPs and the desired elements were depicted in energy dispersive X-ray (EDX) spectrum which confirms the purity of DB-NiONPs. The DB-NiONPs efficiently decolorised the Black B133 (BB133) dye to 86% in 25 min. The data of adsorption studies well fitted into Langmuir isotherm and pseudo-second order kinetic model. The thermodynamic study substantiated the spontaneous, feasible and endothermic process of adsorption. DB-NiONPs revealed enhanced antimicrobial, larvicidal and nematicidal activities against the selected microbes, larva of Culex pipens and juveniles of Meloidogyne incognita respectively. The phytotoxicity studies revealed the DB-NiONPs had a positive impact on the germination and growth of green gram seedlings.
Collapse
Affiliation(s)
- G V Geethamala
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - A V Swathilakshmi
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - S Keerthana
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - D Vidhyanivetha
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - G Preethi
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - P Chitra
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - M Poonkothai
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India.
| |
Collapse
|
2
|
Martens N, Zhan N, Yam SC, Leijten FPJ, Palumbo M, Caspers M, Tiane A, Friedrichs S, Li Y, van Vark-van der Zee L, Voortman G, Zimetti F, Jaarsma D, Verschuren L, Jonker JW, Kuipers F, Lütjohann D, Vanmierlo T, Mulder MT. Supplementation of Seaweed Extracts to the Diet Reduces Symptoms of Alzheimer's Disease in the APPswePS1ΔE9 Mouse Model. Nutrients 2024; 16:1614. [PMID: 38892548 PMCID: PMC11174572 DOI: 10.3390/nu16111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
We previously demonstrated that diet supplementation with seaweed Sargassum fusiforme (S. fusiforme) prevented AD-related pathology in a mouse model of Alzheimer's Disease (AD). Here, we tested a lipid extract of seaweed Himanthalia elongata (H. elongata) and a supercritical fluid (SCF) extract of S. fusiforme that is free of excess inorganic arsenic. Diet supplementation with H. elongata extract prevented cognitive deterioration in APPswePS1ΔE9 mice. Similar trends were observed for the S. fusiforme SCF extract. The cerebral amyloid-β plaque load remained unaffected. However, IHC analysis revealed that both extracts lowered glial markers in the brains of APPswePS1ΔE9 mice. While cerebellar cholesterol concentrations remained unaffected, both extracts increased desmosterol, an endogenous LXR agonist with anti-inflammatory properties. Both extracts increased cholesterol efflux, and particularly, H. elongata extract decreased the production of pro-inflammatory cytokines in LPS-stimulated THP-1-derived macrophages. Additionally, our findings suggest a reduction of AD-associated phosphorylated tau and promotion of early oligodendrocyte differentiation by H. elongata. RNA sequencing on the hippocampus of one-week-treated APPswePS1ΔE9 mice revealed effects of H. elongata on, amongst others, acetylcholine and synaptogenesis signaling pathways. In conclusion, extracts of H. elongata and S. fusiforme show potential to reduce AD-related pathology in APPswePS1ΔE9 mice. Increasing desmosterol concentrations may contribute to these effects by dampening neuroinflammation.
Collapse
Affiliation(s)
- Nikita Martens
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, B-3590 Hasselt, Belgium
| | - Na Zhan
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Sammie C. Yam
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
| | - Frank P. J. Leijten
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
| | - Marcella Palumbo
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (M.P.)
| | - Martien Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | - Assia Tiane
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, B-3590 Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Institute, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Silvia Friedrichs
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, D-53127 Bonn, Germany (D.L.)
| | - Yanlin Li
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
- Department of Immunology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
- Department of Ophthalmology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Leonie van Vark-van der Zee
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
| | - Gardi Voortman
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (M.P.)
| | - Dick Jaarsma
- Department of Neuroscience, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | - Johan W. Jonker
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.W.J.)
| | - Folkert Kuipers
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.W.J.)
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, D-53127 Bonn, Germany (D.L.)
| | - Tim Vanmierlo
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, B-3590 Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Institute, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Monique T. Mulder
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands (Y.L.); (G.V.); (T.V.)
| |
Collapse
|
3
|
Pereira L, Cotas J, Gonçalves AM. Seaweed Proteins: A Step towards Sustainability? Nutrients 2024; 16:1123. [PMID: 38674814 PMCID: PMC11054349 DOI: 10.3390/nu16081123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
This review delves into the burgeoning field of seaweed proteins as promising alternative sources of protein. With global demand escalating and concerns over traditional protein sources' sustainability and ethics, seaweed emerges as a viable solution, offering a high protein content and minimal environmental impacts. Exploring the nutritional composition, extraction methods, functional properties, and potential health benefits of seaweed proteins, this review provides a comprehensive understanding. Seaweed contains essential amino acids, vitamins, minerals, and antioxidants. Its protein content ranges from 11% to 32% of dry weight, making it valuable for diverse dietary preferences, including vegetarian and vegan diets. Furthermore, this review underscores the sustainability and environmental advantages of seaweed protein production compared to traditional sources. Seaweed cultivation requires minimal resources, mitigating environmental issues like ocean acidification. As the review delves into specific seaweed types, extraction methodologies, and functional properties, it highlights the versatility of seaweed proteins in various food products, including plant-based meats, dairy alternatives, and nutritional supplements. Additionally, it discusses the potential health benefits associated with seaweed proteins, such as their unique amino acid profile and bioactive compounds. Overall, this review aims to provide insights into seaweed proteins' potential applications and their role in addressing global protein needs sustainably.
Collapse
Affiliation(s)
- Leonel Pereira
- Marine Resources, Conservation and Technology, Marine Algae Laboratory, Centre for Functional Ecology—Science for People & the Planet (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (A.M.G.)
| | - João Cotas
- Marine Resources, Conservation and Technology, Marine Algae Laboratory, Centre for Functional Ecology—Science for People & the Planet (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (A.M.G.)
| | - Ana Marta Gonçalves
- Marine Resources, Conservation and Technology, Marine Algae Laboratory, Centre for Functional Ecology—Science for People & the Planet (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (A.M.G.)
- Department of Biology and CESAM—Centro de Estudos do Ambiente e do Mar, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Baek UB, Kim HY. Physicochemical Properties of Restructured Black Goat Jerky with Various Types of Ultra-Ground Seaweed Powders. Food Sci Anim Resour 2024; 44:483-497. [PMID: 38764507 PMCID: PMC11097035 DOI: 10.5851/kosfa.2024.e80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 05/21/2024] Open
Abstract
This study investigated the effects of ultra-ground seaweed powders (USP) on the physicochemical properties (proximate composition, mineral contents, pH, color, shear force, sensory evaluation, electronic nose, and electronic tongue) of restructured black goat jerky. Restructured black goat jerky was prepared using three different treatments, i.e., 3% (w/w) each of ultra-ground sea tangle (ST; Undaria pinnatifida), sea mustard (SM; Saccharina japonica), and sea string (SS; Gracilaria verrucosa) powders. Moisture and ash contents were significantly higher in the USP-treated group than in the control (p<0.05). Potassium, calcium, and zinc contents were significantly higher in the SM than in the other USP-treated groups (p<0.05). In contrast, pH values were significantly higher in the ST and SM than in the control and SS (p<0.05). CIE L*, CIE a*, CIE b*, and shear force were significantly lower in the USP-treated groups than in the control (p<0.05). Sensory evaluation revealed no significant difference in taste, texture, seaweed-like odor, and goaty flavor (p<0.05). Principal component analysis (PCA) and peak graph analysis of the electronic nose showed that the SS differed the most from the control compared with the other USP-treated groups, owing to the seaweed odor of ultra-ground SS powder. The PCA and ranking analysis of the electronic tongue showed that the umami taste of the SM was higher than that of the control and other USP-treated groups. Therefore, the potassium, calcium, zinc contents, and umami taste of reconstituted black goat jerky were significantly higher in the SM than in the control and other USP-treated groups.
Collapse
Affiliation(s)
- Ui-Bin Baek
- Department of Animal Resources Science,
Kongju National University, Yesan 32439, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science,
Kongju National University, Yesan 32439, Korea
- Resource Science Research Institute,
Kongju National University, Yesan 32439, Korea
| |
Collapse
|
5
|
Gamero-Vega G, Vásquez-Corales E, Ormeño-Llanos M, Cordova-Ruiz M, Quitral V. Characterization of Red Seaweed Chondracanthus Chamissoi from the Coasts of Perú: Chemical Composition, Antioxidant Capacity and Functional Properties. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:137-142. [PMID: 38206480 DOI: 10.1007/s11130-023-01135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
The present investigation finds that Chondracanthus chamissoi seaweed abounding in Peruvian coasts is characterized by its nutritional composition, total polyphenols, antioxidant capacity, and functional properties such as water-holding capacity (WHC), oil-holding capacity (OHC), and swelling capacity (SC). Boiling and steaming were applied before dehydration to evaluate the effect of these thermal treatments, keeping a control sample. The results indicated that the control dried seaweed sample presented 20.2 ± 0.16 g/100 g dw of proteins, 20.0 ± 0.61 g/100 g dw of ash, and 56.6 ± 0.08 g/100 g dw of total dietary fiber. In addition, the control sample presented 1.6 ± 0.07 mg GAE/g of total polyphenol content and 2.4 ± 0.30 mM Trolox mg/g of antioxidant capacity. In boiling samples, the apparent nutrient retention factors for proteins, fat, and dietary fiber are 96, 47 and 74%, respectively. In the steaming sample, the values were 102, 29, and 92%. The boiling before dehydration causes a significant decrease (p < 0.05) in total polyphenols and increases carbohydrates. Steaming before dehydration, a significant (p < 0.05) increase occurs in carbohydrates without significantly altering the concentration of total polyphenols. Regarding the functional properties, C. chamissoi presents 17.6 ± 0.15 g/g of WHC, 2.4 ± 0.78 g/g of OHC, and 9.8 ± 0.75 mL/g of SC. Boiling produces an increase in WHC and OHC; steaming does not affect the properties of the control sample.C. chamissoi seaweed collected from the coasts of Perú is an excellent alternative for use as food and ingredients in processed foods for human consumption.
Collapse
Affiliation(s)
- Giulianna Gamero-Vega
- Escuela Profesional de Farmacia y Bioquímica, Facultad de Ciencias de la Salud, Universidad Católica Los Ángeles de Chimbote, Chimbote, Perú, 02801, Perú
| | - Edison Vásquez-Corales
- Escuela Profesional de Farmacia y Bioquímica, Facultad de Ciencias de la Salud, Universidad Católica Los Ángeles de Chimbote, Chimbote, Perú, 02801, Perú
| | - Mily Ormeño-Llanos
- Escuela Profesional de Farmacia y Bioquímica, Facultad de Ciencias de la Salud, Universidad Católica Los Ángeles de Chimbote, Chimbote, Perú, 02801, Perú
| | - Madeleine Cordova-Ruiz
- Escuela Profesional de Farmacia y Bioquímica, Facultad de Ciencias de la Salud, Universidad Católica Los Ángeles de Chimbote, Chimbote, Perú, 02801, Perú
| | - Vilma Quitral
- Escuela de Nutrición y Dietética, Facultad de Salud, Universidad Santo Tomás, Santiago, 8370003, Chile.
| |
Collapse
|
6
|
Nguyen HC, Ngo KN, Tran HK, Barrow CJ. Enzyme-Assisted Coextraction of Phenolics and Polysaccharides from Padina gymnospora. Mar Drugs 2024; 22:42. [PMID: 38248667 PMCID: PMC10817698 DOI: 10.3390/md22010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Brown seaweed is a promising source of polysaccharides and phenolics with industrial utility. This work reports the development of a green enzyme-assisted extraction method for simultaneously extracting polysaccharides and phenolics from the brown seaweed Padina gymnospora. Different enzymes (Cellulast, Pectinex, and Alcalase), individually and in combination, were investigated, with Alcalase alone showing the highest efficiency for the simultaneous extraction of polysaccharides and phenolics. Yields from Alcalase-assisted aqueous extraction were higher than those obtained using either water alone or conventional ethanol extraction. Alcalase-assisted extraction was subsequently optimized using a response surface methodology to maximize compound recovery. Maximal polysaccharide and phenolic recovery was obtained under the following extraction conditions: a water-to-sample ratio of 61.31 mL/g, enzyme loading of 0.32%, temperature of 60.5 °C, and extraction time of 1.95 h. The extract was then fractionated to obtain alginate-, fucoidan-, and phenolic-rich fractions. Fractions exhibited potent 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity with IC50 values of 140.55 µg/mL, 126.21 µg/mL, and 48.17 µg/mL, respectively, which were higher than those obtained from conventional extraction methods. The current work shows that bioactive polysaccharides and phenolics can be obtained together in high yield through a single aqueous-only green and efficient Alcalase-assisted extraction.
Collapse
Affiliation(s)
- Hoang Chinh Nguyen
- Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC 3216, Australia
| | - Kim Ngan Ngo
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; (K.N.N.); (H.K.T.)
| | - Hoai Khang Tran
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; (K.N.N.); (H.K.T.)
| | - Colin J. Barrow
- Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|