1
|
Świeca M, Reguła J, Molska M, Jarocki P, Murat J, Pytka M, Wessely-Szponder J. Adzuki and Mung Bean Sprouts Enriched with Probiotic Lactiplantibacillus plantarum 299v Improve Body Mass Gain and Antioxidant Status and Reduce the Undesirable Enzymatic Activity of Microbiota in Healthy Rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:270-276. [PMID: 38358639 DOI: 10.1007/s11130-024-01157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Introducing and establishing new food requires a detailed evaluation of its safety, nutritional value and functionality, thus the control and probiotic-rich adzuki and mung bean sprouts were studied in an in vivo rats model. However, the total feed intake did not differ significantly between the groups, the highest body weight gain and body weight change were recorded in the control AIN diet. At the same time, the addition of legume sprouts caused a reduction of these parameters (up to 25% in the variant with probiotic-rich adzuki bean sprouts). There was no significant effect on serum morphology, except white blood cells (ca. 20% reduction in the control sprout-supplemented diets). Serum and liver antiradical properties were significantly elevated by consuming mung bean sprouts (no effect of the probiotics). The faecal lactic acid bacteria were already increased by the control sprouts (a 2.8- and 2.1-fold increase for adzuki and mung bean sprouts, respectively). The probiotic-rich sprouts further improved this parameter. The diets enriched with mung bean sprouts significantly decreased the urease (by ca. 65%) and β-glucuronidase activities (by ca. 30%). All the tested diets caused also a significant reduction of faecal tryptophanase activity (the effect was intensified by Lactiplantibacillus plantarum 299v). The functional components did not affect negatively the nutritional parameters and blood morphological characteristics. They improved also the antioxidant potential and significantly decreased the activities of colon cancer-related enzymes (urease and tryptophanase). The results confirmed that these new probiotic carriers may be a valuable, safe and functional element of a healthy diet.
Collapse
Affiliation(s)
- Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, Lublin, 20-704, Poland.
| | - Julita Reguła
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego Str. 31, Poznań, 60-624, Poland
| | - Marta Molska
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego Str. 31, Poznań, 60-624, Poland
- Department of Dietetics, Faculty of Physical Culture in Gorzów Wlkp, Poznan University of Physical Education, Estkowskiego 13, Gorzów Wielkopolski, 66-400, Poland
| | - Piotr Jarocki
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Lublin, Poland
| | - Jakub Murat
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, Lublin, 20-704, Poland
| | - Monika Pytka
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Lublin, Poland
| | - Joanna Wessely-Szponder
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, Lublin, 20-033, Poland
| |
Collapse
|
2
|
Abdel-Aal ESM. Insights into Grain Milling and Fractionation Practices for Improved Food Sustainability with Emphasis on Wheat and Peas. Foods 2024; 13:1532. [PMID: 38790832 PMCID: PMC11121700 DOI: 10.3390/foods13101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Cereal grains and pulses are staple foods worldwide, being the primary supply of energy, protein, and fiber in human diets. The current practice of milling and fractionation yields large quantities of byproducts and waste, which are largely downgraded and end up as animal feeds or fertilizers. This adversely affects food security and the environment, and definitely implies an urgent need for a sustainable grain processing system to rectify the current issues, particularly the management of waste and excessive use of water and energy. The current review intends to discuss the limitations and flaws of the existing practice of grain milling and fractionation, along with potential solutions to make it more sustainable, with an emphasis on wheat and peas as common fractionation crops. This review discusses a proposed sustainable grain processing system for the fractionation of wheat or peas into flour, protein, starch, and value-added components. The proposed system is a hybrid model that combines dry and wet fractionation processes in conjunction with the implementation of three principles, namely, integration, recycling, and upcycling, to improve component separation efficiency and value addition and minimize grain milling waste. The three principles are critical in making grain processing more efficient in terms of the management of waste and resources. Overall, this review provides potential solutions for how to make the grain processing system more sustainable.
Collapse
Affiliation(s)
- El-Sayed M Abdel-Aal
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| |
Collapse
|
3
|
Osei Tutu C, Amissah JGN, Amissah JN, Akonor PT, Budu AS, Saalia FK. Application of Frafra potato ( Solenostemon rotundifolius) flour in the development of gluten-free bread. Heliyon 2024; 10:e24521. [PMID: 38304828 PMCID: PMC10831620 DOI: 10.1016/j.heliyon.2024.e24521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
The rising cost of wheat flour and incidences of celiac disease, an intolerance to gluten in wheat products, have created the need to explore ingredients, especially alternative flours, for developing gluten-free products. This study examined the performance of Frafra potato flour (FPF), a nutritious lesser-known indigenous crop, in the production of bread using a novel dough-conditioners (egg-gelatin combinations), and Transglutaminase blend to improve the product properties. The developed product was evaluated for physicochemical and sensory characteristics. The findings indicated that products with a single dough-conditioner (GFBE and GFBG) exhibited a weaker dough, prolonged development time, reduced stability, mixing tolerance, and increased cooking loss (p < 0.05). However, egg-gelatin dough-conditioner in GFBEG effectively improved the dough and bread structure, comparable to conventional bread (WTB). The dough stability and development time in GFBEG improved by 30 %, while bread volume increased by 10 %. SEM showed an improved network matrix and well-embedded starch granules in GFBEG, comparable to WTB. Sensory evaluation revealed GFBEG had a minor bitter flavour note, relative to WTB. Therefore, combining FPF with multiple dough-conditioners and TGase will produce bread with comparable characteristics to conventional bread. However, further optimization and consumer acceptability studies are imperative to provide food processors with a viable product for the market.
Collapse
Affiliation(s)
- Crossby Osei Tutu
- Department of Family and Consumer Sciences, University of Ghana, Legon, Accra, Ghana
| | | | | | | | - Agnes Simpson Budu
- Department of Nutrition and Food Science, University of Ghana, Legon, Accra, Ghana
| | - Firibu Kwesi Saalia
- Department of Nutrition and Food Science, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
4
|
Russo P, Diez-Ozaeta I, Mangieri N, Tamame M, Spano G, Dueñas MT, López P, Mohedano ML. Biotechnological Potential and Safety Evaluation of Dextran- and Riboflavin-Producing Weisella cibaria Strains for Gluten-Free Baking. Foods 2023; 13:69. [PMID: 38201097 PMCID: PMC10778100 DOI: 10.3390/foods13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Gluten consumption causes several immunological and non-immunological intolerances in susceptible individuals. In this study, the dextran-producing Weissella cibaria BAL3C-5 and its derivative, the riboflavin-overproducing strain BAL3C-5 C120T, together with a commercial bakery yeast, were used to ferment gluten-free (GF)-doughs obtained from corn and rice flours at two different concentrations and supplemented with either quinoa, buckwheat, or chickpea to obtain laboratory-scale GF bread. The levels of dextran, riboflavin, and total flavins were determined in the fermented and breads. Both strains grew in fermented doughs and contributed dextran, especially to those made with corn plus quinoa (~1 g/100 g). The highest riboflavin (350-150 µg/100 g) and total flavin (2.3-1.75 mg/100 g) levels were observed with BAL3C-5 C120T, though some differences were detected between the various doughs or breads, suggesting an impact of the type of flour used. The safety assessment confirmed the lack of pathogenic factors in the bacterial strains, such as hemolysin and gelatinase activity, as well as the genetic determinants for biogenic amine production. Some intrinsic resistance to antibiotics, including vancomycin and kanamycin, was found. These results indicated the microbiological safety of both W. cibaria strains and indicated their potential application in baking to produce GF bread.
Collapse
Affiliation(s)
- Pasquale Russo
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy; (P.R.); (N.M.)
| | - Iñaki Diez-Ozaeta
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (I.D.-O.); (P.L.)
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 San Sebastián, Spain;
| | - Nicola Mangieri
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy; (P.R.); (N.M.)
| | - Mercedes Tamame
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Giuseppe Spano
- DAFNE Department, University of Foggia, 71122 Foggia, Italy;
| | - Maria Teresa Dueñas
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 San Sebastián, Spain;
| | - Paloma López
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (I.D.-O.); (P.L.)
| | - Mari Luz Mohedano
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (I.D.-O.); (P.L.)
| |
Collapse
|