1
|
Sulejmanović J, Memić M, Šehović E, Omanović R, Begić S, Pazalja M, Ajanović A, Azhar O, Sher F. Synthesis of green nano sorbents for simultaneous preconcentration and recovery of heavy metals from water. CHEMOSPHERE 2022; 296:133971. [PMID: 35182527 DOI: 10.1016/j.chemosphere.2022.133971] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/22/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The wastewater containing Cd, Co, Fe, Cu, Cr, Mn, Ni and Pb ions are as trace metal pollutants. Water pollution caused by increment in industrialization and overpopulation reveals a major threat to human health. Adsorption is recognized as the effective and optimum method to remove water contaminations. The amorphous and porous form of silicon dioxide is silica gel widely used as an adsorbent. It can absorb moisture with traces of the target heavy metal ions. This research elaborates a simplistic, and reliable preconcentration column method highly developed for the determination of Cd2+, Fe3+, Co2+, Cr3+, Cu2+, Mn2+, Pb2+ and Ni2+ ions in model solutions and real water samples by flame atomic absorption spectrometry (FAAS). The proposed operation depends on the retention of the target ions from buffered model solutions on a silica gel filled up a column modified with vanadium(V) oxide sorbent followed by their desorption. SiO2/V2O5 is an efficient adsorbent due to its low cost, eco-friendly and high availability. The adsorbent morphological and interfacial physicochemical characterization was done using scanning electron microscopy, and Fourier transmission infrared spectroscopy, respectively. The 2.92 value achieved for the point of zero charges supports the experimentation for the heavy metal efficient adsorption. Quantitative recoveries were achieved at pH 10 with 50 mg of SiO2/V2O5 mass and adsorption capacity ranged from 28.96 μmol/g (Pb) to 214.86 μmol/g (Fe) with 1114.79 μmol/g in total. Simultaneous preconcentration effect was determined by the interference cations on the sorbent. The LOD varies from 8.42 to 50.56 μg/L and LOQ is achieved from 20.06 to 72.41 μg/L of 15 blank solutions. The developed preconcentration procedure was adequately implemented for the simultaneous analysis of eight metallic ions content in local river samples. The developed vanadium(V) oxide incorporated with silica gel is practicable as an economical and effective adsorbent to eliminate metallic ions from a liquid solution.
Collapse
Affiliation(s)
- Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, Sarajevo 71 000, Bosnia and Herzegovina.
| | - Mustafa Memić
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, Sarajevo 71 000, Bosnia and Herzegovina
| | - Elma Šehović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, Sarajevo 71 000, Bosnia and Herzegovina
| | - Rasim Omanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, Sarajevo 71 000, Bosnia and Herzegovina
| | - Sabina Begić
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, Sarajevo 71 000, Bosnia and Herzegovina
| | - Mirha Pazalja
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Atifa Ajanović
- Faculty of Veterinary Medicine, University of Sarajevo, Zmaja od Bosne 90, 71000, Sarajevo, Bosnia and Herzegovina
| | - Ofaira Azhar
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan; International Society of Engineering Science and Technology, United Kingdom
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
| |
Collapse
|
2
|
Yergaziyeva GY, Dossumov K, Mambetova MM, Strizhak PY, Kurokawa H, Baizhomartov B. Effect of Ni, La, and Ce Oxides on a Cu/Al
2
O
3
Catalyst with Low Copper Loading for Ethanol Non‐oxidative Dehydrogenation. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gaukhar Yergaziyevna Yergaziyeva
- Center of Physical and Chemical Methods of Research and Analysis Karasay Batyr str. 95 A 050012 Almaty Kazakhstan
- al-Farabi Kazakh National University al- Farabi ave. 71 050040 Almaty Kazakhstan
| | - Kusman Dossumov
- Center of Physical and Chemical Methods of Research and Analysis Karasay Batyr str. 95 A 050012 Almaty Kazakhstan
| | - Manshuk Muratkyzy Mambetova
- Center of Physical and Chemical Methods of Research and Analysis Karasay Batyr str. 95 A 050012 Almaty Kazakhstan
- Kazakh National Women's Teacher Training University Aiteke bi str. 99 050012 Almaty Kazakhstan
| | - Peter Yevgenevich Strizhak
- National Academy of Sciences of Ukraine L.V. Pysarzhevskii Institute of Physical Chemistry Prospekt Nauki, 31 03028 Kiev Ukraine
| | - Hideki Kurokawa
- Saitama University Graduate School of Science and Engineering 255, Shimo-okubo, Sakura-ku 338-8570 Saitama Japan
| | - Bedelzhan Baizhomartov
- Center of Physical and Chemical Methods of Research and Analysis Karasay Batyr str. 95 A 050012 Almaty Kazakhstan
| |
Collapse
|
3
|
Abstract
Due to the high costs and low selectivity associated with the production of propylene, new routes for its synthesis are being sought. Dehydration has been widely investigated in this field, but, thus far, no study has produced efficient results for isopropanol. Vanadium-zirconia catalysts have been shown to be effective for the dehydration of ethanol. Therefore, we investigated the activity of such catalysts in the dehydration of isopropanol. The catalysts were synthetized on a SBA-15 base, supplemented with zirconia or combined zirconia and vanadium. Tests were conducted in a continuous flow reactor at 150–300 °C. Samples were analyzed using a gas chromatograph. The most active catalyst showed 96% conversion with 100% selectivity to propylene. XRD, SEM and Raman spectroscopy analyses revealed that as the vanadium content increases, the pore size of the catalyst decreases and both isopropanol conversion and propylene selectivity are reduced. Thus, without the addition of vanadium, the Zr-SBA-15 catalyst appears to be suitable for the dehydration of isopropanol to propylene.
Collapse
|
4
|
Andrushkevich T, Ovchinnikova E. The role of water in selective heterogeneous catalytic oxidation of hydrocarbons. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Bulánek R, Čičmanec P, Kotera J, Boldog I. Efficient oxidative dehydrogenation of ethanol by VOx@MIL-101: On par with VOx/ZrO2 and much better than MIL-47(V). Catal Today 2019. [DOI: 10.1016/j.cattod.2018.07.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Hu P, Chen Y, Yan X, Lang WZ, Guo YJ. Correlation of the Vanadium Precursor and Structure Performance of Porous VOX-SiO2 Solids for Catalytic Dehydrogenation of Propane. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b06089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ping Hu
- The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Yan Chen
- The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Xi Yan
- The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Wan-Zhong Lang
- The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Ya-Jun Guo
- The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| |
Collapse
|
7
|
Boldog I, Čičmanec P, Ganjkhanlou Y, Bulánek R. Surfactant templated synthesis of porous VO x -ZrO 2 catalysts for ethanol conversion to acetaldehyde. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Dovbeshko G, Kovalska E, Miśta W, Klimkiewicz R. Bimolecular condensation reactions of butan-1-ol on Ag–CeO2 decorated multiwalled carbon nanotubes. REACTION KINETICS MECHANISMS AND CATALYSIS 2017. [DOI: 10.1007/s11144-017-1254-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|