1
|
Matusoiu F, Negrea A, Ciopec M, Duteanu N, Negrea P, Ianasi P, Ianasi C. Vanadium (V) Adsorption from Aqueous Solutions Using Xerogel on the Basis of Silica and Iron Oxide Matrix. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8970. [PMID: 36556774 PMCID: PMC9786883 DOI: 10.3390/ma15248970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/02/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Vanadium is considered a strategic metal with wide applications in various industries due to its unique chemical and physical properties. On the basis of these considerations, the recovery of vanadium (V) is mandatory because of the lack of raw materials. Various methods are used to recover vanadium (V) from used aqueous solutions. This study develops a clean and effective process for the recovery of vanadium (V) by using the adsorption method. At the same time, this study synthesizes a material starting from silica matrices and iron oxides, which is used as an adsorbent material. To show the phase composition, the obtained material is characterized by X-ray diffraction showing that the material is present in the amorphous phase, with a crystal size of 20 nm. However, the morphological texture of the material is determined by the N2 adsorption-desorption method, proving that the adsorbent material has a high surface area of 305 m2/g with a total pore volume of 1.55 cm3/g. To determine the efficiency of the SiO2FexOy material for the recovery of vanadium through the adsorption process, the role of specific parameters, such as the L-to-V ratio, pH, contact time, temperature, and initial vanadium concentration, must be evaluated. The adsorption process mechanism was established through kinetic, thermodynamic, and equilibrium studies. In our case, the process is physical, endothermic, spontaneous, and takes place at the interface of SiO2FexOy with V2O5. Following equilibrium studies, the maximum adsorption capacity of the SiO2FexOy material was 58.8 mg (V)/g of material.
Collapse
Affiliation(s)
- Florin Matusoiu
- Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania
| | - Adina Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania
| | - Mihaela Ciopec
- Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania
| | - Narcis Duteanu
- Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania
| | - Petru Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania
| | - Paula Ianasi
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 144th Dr. A.P. Podeanu Street, 300569 Timisoara, Romania
| | - Cătălin Ianasi
- “Coriolan Drăgulescu” Institute of Chemistry, Bv. Mihai Viteazul, No. 24, 300223 Timisoara, Romania
| |
Collapse
|
2
|
Faizan M, Li H, Liu Y, Li K, Wei S, Zhang R, Liu R. Copper-based deep eutectic solvents (Cu-DES) assisted the VPO catalyst as a structural and electronic promoter for n-butane selective oxidation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
3
|
Tuci G, Liu Y, Rossin A, Guo X, Pham C, Giambastiani G, Pham-Huu C. Porous Silicon Carbide (SiC): A Chance for Improving Catalysts or Just Another Active-Phase Carrier? Chem Rev 2021; 121:10559-10665. [PMID: 34255488 DOI: 10.1021/acs.chemrev.1c00269] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is an obvious gap between efforts dedicated to the control of chemicophysical and morphological properties of catalyst active phases and the attention paid to the search of new materials to be employed as functional carriers in the upgrading of heterogeneous catalysts. Economic constraints and common habits in preparing heterogeneous catalysts have narrowed the selection of active-phase carriers to a handful of materials: oxide-based ceramics (e.g. Al2O3, SiO2, TiO2, and aluminosilicates-zeolites) and carbon. However, these carriers occasionally face chemicophysical constraints that limit their application in catalysis. For instance, oxides are easily corroded by acids or bases, and carbon is not resistant to oxidation. Therefore, these carriers cannot be recycled. Moreover, the poor thermal conductivity of metal oxide carriers often translates into permanent alterations of the catalyst active sites (i.e. metal active-phase sintering) that compromise the catalyst performance and its lifetime on run. Therefore, the development of new carriers for the design and synthesis of advanced functional catalytic materials and processes is an urgent priority for the heterogeneous catalysis of the future. Silicon carbide (SiC) is a non-oxide semiconductor with unique chemicophysical properties that make it highly attractive in several branches of catalysis. Accordingly, the past decade has witnessed a large increase of reports dedicated to the design of SiC-based catalysts, also in light of a steadily growing portfolio of porous SiC materials covering a wide range of well-controlled pore structure and surface properties. This review article provides a comprehensive overview on the synthesis and use of macro/mesoporous SiC materials in catalysis, stressing their unique features for the design of efficient, cost-effective, and easy to scale-up heterogeneous catalysts, outlining their success where other and more classical oxide-based supports failed. All applications of SiC in catalysis will be reviewed from the perspective of a given chemical reaction, highlighting all improvements rising from the use of SiC in terms of activity, selectivity, and process sustainability. We feel that the experienced viewpoint of SiC-based catalyst producers and end users (these authors) and their critical presentation of a comprehensive overview on the applications of SiC in catalysis will help the readership to create its own opinion on the central role of SiC for the future of heterogeneous catalysis.
Collapse
Affiliation(s)
- Giulia Tuci
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10, 50019 Sesto F.no, Florence, Italy
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023 Dalian, China
| | - Andrea Rossin
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10, 50019 Sesto F.no, Florence, Italy
| | - Xiangyun Guo
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Charlotte Pham
- SICAT SARL, 20 place des Halles, 67000 Strasbourg, France
| | - Giuliano Giambastiani
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10, 50019 Sesto F.no, Florence, Italy.,Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 of the CNRS-University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Cuong Pham-Huu
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 of the CNRS-University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| |
Collapse
|
4
|
Duan Y, Jiang H, Wang H. Bifunctional catalyst of mordenite‐ and alumina‐supported platinum for isobutane hydroisomerization to
n
‐butane. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yaoyao Duan
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin China
| | - Hui Jiang
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin China
| | - Hefang Wang
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin China
| |
Collapse
|
5
|
Mishra G, Behera GC, Singh SK, Parida K. Facile Synthesis and Synergetic Interaction of VPO/β-SiC Composites toward Solvent-Free Oxidation of Methanol to Formaldehyde. ACS OMEGA 2020; 5:22808-22815. [PMID: 32954129 PMCID: PMC7495449 DOI: 10.1021/acsomega.0c01921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/08/2020] [Indexed: 05/14/2023]
Abstract
Composite materials have revealed remarkable activities in various catalytic applications. However, choosing an appropriate material to enhance the catalytic activity and stability is a major challenge in the field of catalysis. In this article, we reported vanadium phosphorus oxide (VPO)/β-SiC as a stable composite material with good catalytic activity. VPO/β-SiC composite materials with different compositions were fabricated by the impregnation technique to investigate the catalytic activity and stability of these materials in liquid-phase reactions. The physiochemical characteristics of the prepared catalysts were analyzed by several spectroscopic methods. The catalytic activities of VPO/β-SiC composites were studied in a solvent-free oxidation of methanol using tert-butyl hydroperoxide (TBHP) as an oxidant. The reaction conditions were optimized by changing various reaction parameters. Under optimized reaction conditions, the 10 wt % VPO/β-SiC composite showed 100% conversion with 89.8% selectivity to formaldehyde.
Collapse
Affiliation(s)
- Gopa Mishra
- Institute of Minerals
and Materials Technology, CSIR, C&MC, Bhubaneswar 751013, Odisha, India
| | - Gobinda C. Behera
- Department of Chemistry, M.P.C. Autonomous College, Takhatpur, Baripada 757003, Odisha, India
| | - Saroj Kumar Singh
- Advanced Materials Technology Department, CSIR—Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Kulamani Parida
- Centre
for Nano Science & Nano Technology, SOA University, Bhubaneswar 751030, Odisha, India
| |
Collapse
|
6
|
Comparative study of physico-chemical, acid–base and catalytic properties of vanadium based catalysts in the oxidehydrogenation of n-butane: effect of the oxide carrier. REACTION KINETICS MECHANISMS AND CATALYSIS 2019. [DOI: 10.1007/s11144-019-01653-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|