1
|
Li X, Li Y, Wang X, Wang H. Zirconium-Gallic Acid Coordination Polymer: Catalytic Transfer Hydrogenation of Levulinic Acid and Its Esters into γ-Valerolactone. Catal Letters 2022. [DOI: 10.1007/s10562-021-03724-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Afonina VA, Mazitov DA, Nurmukhametova A, Shevelev MD, Khasanova DA, Nugmanov RI, Burilov VA, Madzhidov TI, Varnek A. Prediction of Optimal Conditions of Hydrogenation Reaction Using the Likelihood Ranking Approach. Int J Mol Sci 2021; 23:ijms23010248. [PMID: 35008674 PMCID: PMC8745269 DOI: 10.3390/ijms23010248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022] Open
Abstract
The selection of experimental conditions leading to a reasonable yield is an important and essential element for the automated development of a synthesis plan and the subsequent synthesis of the target compound. The classical QSPR approach, requiring one-to-one correspondence between chemical structure and a target property, can be used for optimal reaction conditions prediction only on a limited scale when only one condition component (e.g., catalyst or solvent) is considered. However, a particular reaction can proceed under several different conditions. In this paper, we describe the Likelihood Ranking Model representing an artificial neural network that outputs a list of different conditions ranked according to their suitability to a given chemical transformation. Benchmarking calculations demonstrated that our model outperformed some popular approaches to the theoretical assessment of reaction conditions, such as k Nearest Neighbors, and a recurrent artificial neural network performance prediction of condition components (reagents, solvents, catalysts, and temperature). The ability of the Likelihood Ranking model trained on a hydrogenation reactions dataset, (~42,000 reactions) from Reaxys® database, to propose conditions that led to the desired product was validated experimentally on a set of three reactions with rich selectivity issues.
Collapse
Affiliation(s)
- Valentina A. Afonina
- Chemoinformatics and Molecular Modelling Lab, A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia; (V.A.A.); (D.A.M.); (A.N.); (M.D.S.); (D.A.K.); (R.I.N.); (V.A.B.)
| | - Daniyar A. Mazitov
- Chemoinformatics and Molecular Modelling Lab, A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia; (V.A.A.); (D.A.M.); (A.N.); (M.D.S.); (D.A.K.); (R.I.N.); (V.A.B.)
| | - Albina Nurmukhametova
- Chemoinformatics and Molecular Modelling Lab, A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia; (V.A.A.); (D.A.M.); (A.N.); (M.D.S.); (D.A.K.); (R.I.N.); (V.A.B.)
| | - Maxim D. Shevelev
- Chemoinformatics and Molecular Modelling Lab, A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia; (V.A.A.); (D.A.M.); (A.N.); (M.D.S.); (D.A.K.); (R.I.N.); (V.A.B.)
- Laboratory of Chemoinformatics (UMR 7140 CNRS/UniStra), Université de Strasbourg, 4, Rue Blaise Pascal, 67000 Strasbourg, France
| | - Dina A. Khasanova
- Chemoinformatics and Molecular Modelling Lab, A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia; (V.A.A.); (D.A.M.); (A.N.); (M.D.S.); (D.A.K.); (R.I.N.); (V.A.B.)
| | - Ramil I. Nugmanov
- Chemoinformatics and Molecular Modelling Lab, A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia; (V.A.A.); (D.A.M.); (A.N.); (M.D.S.); (D.A.K.); (R.I.N.); (V.A.B.)
| | - Vladimir A. Burilov
- Chemoinformatics and Molecular Modelling Lab, A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia; (V.A.A.); (D.A.M.); (A.N.); (M.D.S.); (D.A.K.); (R.I.N.); (V.A.B.)
| | - Timur I. Madzhidov
- Chemoinformatics and Molecular Modelling Lab, A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia; (V.A.A.); (D.A.M.); (A.N.); (M.D.S.); (D.A.K.); (R.I.N.); (V.A.B.)
- Correspondence: (T.I.M.); (A.V.)
| | - Alexandre Varnek
- Laboratory of Chemoinformatics (UMR 7140 CNRS/UniStra), Université de Strasbourg, 4, Rue Blaise Pascal, 67000 Strasbourg, France
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 001-0021, Japan
- Correspondence: (T.I.M.); (A.V.)
| |
Collapse
|