1
|
Chen W, Yang F, Xu H, Pan J, Liu J, Dabbour M, Mintah BK, Huang L, Dai C, Ma H, He R. Hexagonal plate ultrasound pretreatment on the correlation between soy protein isolate structure and cholesterol-lowering activity of peptides, and protein's enzymolysis kinetics, thermodynamics. Int J Biol Macromol 2024; 258:128897. [PMID: 38141711 DOI: 10.1016/j.ijbiomac.2023.128897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
In this study, a hexagonal plate ultrasound (HPU) pretreatment technology was employed to modify soy protein isolate (SPI) and enhance the hypocholesterolemic activity of enzymatic digests from SPI. Results demonstrated that under the condition of ultrasound power density of 40 W/L, the hypocholesterolemic activity of enzymatic digests from HPU-pretreated SPI (HPU-SPI) increased by 88.40 % compared to control group after gastrointestinal digestion. The sulfhydryl content of HPU-SPI increased by a maximum of 45.32 % compared to control group. Fourier transform infrared and scanning electron microscopy revealed that HPU pretreatment partially unfolded the SPI conformation, reduced the intermolecular interactions, and exposed the internal hydrophobic regions. Pearson correlation analysis showed that sulfhydryl groups (r = 0.860), disulfide bonds (r = -0.875) and random coil (r = 0.917) were strongly correlated with the cholesterol-lowering activity of soy protein hydrolysate (SPH), following a simulated gastrointestinal digestion. Finally, the effects of HPU pretreatment on enzymolysis kinetics and thermodynamics of the SPI enzymatic process showed that HPU pretreatment significantly reduced the Mie's constant, activation energy, activation enthalpy, activation entropy and Gibbs free energy. Overall, the study outcome suggested that HPU pretreatment could positively influence the hypocholesterolemic peptide activity, and thus, may be beneficial to the pharmaceutical/food industry.
Collapse
Affiliation(s)
- Wen Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Fan Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haining Xu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jiayin Pan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jun Liu
- Shandong Yuwang Ecological Food Industry Co. Ltd., Yucheng 251200, China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | - Benjamin Kumah Mintah
- CSIR - Food Research Institute, P.O. Box M20, Accra, Ghana; Department of Agro-processing Technology and Food Bio-sciences, CSIR College of Science and Technology (CCST), Accra, Ghana
| | - Liurong Huang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
2
|
Qian J, Chen D, Zhang Y, Gao X, Xu L, Guan G, Wang F. Ultrasound-Assisted Enzymatic Protein Hydrolysis in Food Processing: Mechanism and Parameters. Foods 2023; 12:4027. [PMID: 37959146 PMCID: PMC10647539 DOI: 10.3390/foods12214027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Ultrasound has been widely used as a green and efficient non-thermal processing technique to assist with enzymatic hydrolysis. Compared with traditional enzymatic hydrolysis, ultrasonic-pretreatment-assisted enzymatic hydrolysis can significantly improve the efficiency of enzymatic hydrolysis and enhance the biological activity of substrates. At present, this technology is mainly used for the extraction of bioactive substances and the degradation of biological macromolecules. This review is focused on the mechanism of enzymatic hydrolysis assisted by ultrasonic pretreatment, including the effects of ultrasonic pretreatment on the enzyme structure, substrate structure, enzymatic hydrolysis kinetics, and thermodynamics and the effects of the ultrasonic conditions on the enzymatic hydrolysis results. The development status of ultrasonic devices and the application of ultrasonic-assisted enzymatic hydrolysis in the food industry are briefly described in this study. In the future, more attention should be paid to research on ultrasound-assisted enzymatic hydrolysis devices to promote the expansion of production and improve production efficiency.
Collapse
Affiliation(s)
- Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Q.); (D.C.); (Y.Z.); (X.G.); (L.X.); (G.G.)
| | - Di Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Q.); (D.C.); (Y.Z.); (X.G.); (L.X.); (G.G.)
| | - Yizhong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Q.); (D.C.); (Y.Z.); (X.G.); (L.X.); (G.G.)
| | - Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Q.); (D.C.); (Y.Z.); (X.G.); (L.X.); (G.G.)
| | - Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Q.); (D.C.); (Y.Z.); (X.G.); (L.X.); (G.G.)
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guoqiang Guan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Q.); (D.C.); (Y.Z.); (X.G.); (L.X.); (G.G.)
| | - Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Q.); (D.C.); (Y.Z.); (X.G.); (L.X.); (G.G.)
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Zhao L, Ouyang D, Cheng X, Zhou X, Lin L, Wang J, Wu Q, Jia J. Multi-frequency ultrasound-assisted cellulase extraction of protein from mulberry leaf: Kinetic, thermodynamic, and structural properties. ULTRASONICS SONOCHEMISTRY 2023; 99:106554. [PMID: 37567039 PMCID: PMC10432955 DOI: 10.1016/j.ultsonch.2023.106554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
The effects of different extraction methods (traditional extraction, ultrasound extraction, cellulase extraction, and ultrasound-assisted cellulase extraction) on the yield of mulberry leaf protein (MLP) were investigated, and the results revealed that multi-frequency ultrasound-assisted cellulase extraction was the most efficient extraction method. The mechanism of the synergistic extraction method used to efficiently extract protein from mulberry leave was investigated, focusing on the kinetics and thermodynamics of the enzymatic process. The results revealed that kinetic parameters KM decreased by 14.07% and kA increased by 5.02%, and the thermodynamic parameters Ea, ΔH, and ΔS decreased by 44.81%, 48.41%, and 21.12 %, respectively, following the process of multi-frequency ultrasound (MFU) pretreatment. The spectral analysis with fluorescence spectra manifested that ultrasound exposed hydrophobic groups and induced molecular unfolding of MLP. Atomic force microscope showed that ultrasound decreased particle size while increasing flexibility of MLP. The effect of ultrasound increases the binding frequency of cellulase and substrates, resulting in greater affinity between the two and promoting the solubilization of MLP. This study provides a theoretical basis to improve the application prospects of MLP.
Collapse
Affiliation(s)
- Li Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Dongyan Ouyang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xinya Cheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xiaotao Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Lebo Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Qiongying Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Junqiang Jia
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| |
Collapse
|
4
|
Wang F, Liu Y, Du C, Gao R. Current Strategies for Real-Time Enzyme Activation. Biomolecules 2022; 12:biom12050599. [PMID: 35625527 PMCID: PMC9139169 DOI: 10.3390/biom12050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Enzyme activation is a powerful means of achieving biotransformation function, aiming to intensify the reaction processes with a higher yield of product in a short time, and can be exploited for diverse applications. However, conventional activation strategies such as genetic engineering and chemical modification are generally irreversible for enzyme activity, and they also have many limitations, including complex processes and unpredictable results. Recently, near-infrared (NIR), alternating magnetic field (AMF), microwave and ultrasound irradiation, as real-time and precise activation strategies for enzyme analysis, can address many limitations due to their deep penetrability, sustainability, low invasiveness, and sustainability and have been applied in many fields, such as biomedical and industrial applications and chemical synthesis. These spatiotemporal and controllable activation strategies can transfer light, electromagnetic, or ultrasound energy to enzymes, leading to favorable conformational changes and improving the thermal stability, stereoselectivity, and kinetics of enzymes. Furthermore, the different mechanisms of activation strategies have determined the type of applicable enzymes and manipulated protocol designs that either immobilize enzymes on nanomaterials responsive to light or magnetic fields or directly influence enzymatic properties. To employ these effects to finely and efficiently activate enzyme activity, the physicochemical features of nanomaterials and parameters, including the frequency and intensity of activation methods, must be optimized. Therefore, this review offers a comprehensive overview related to emerging technologies for achieving real-time enzyme activation and summarizes their characteristics and advanced applications.
Collapse
|
5
|
Li Q, Yang H, Coldea TE, Andersen ML, Li W, Zhao H. Enzymolysis kinetics, thermodynamics and structural property of brewer’s spent grain protein pretreated with ultrasound. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Priya, Gogate PR. Ultrasound-Assisted Intensification of Activity of Free and Immobilized Enzymes: A Review. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Priya
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Parag R. Gogate
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| |
Collapse
|
7
|
Zhang C, Liang X, Abdo AAA, Kaddour B, Li X, Teng C, Wan C. Ultrasound-assisted lipase-catalyzed synthesis of ethyl acetate: process optimization and kinetic study. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2020.1868331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Xin Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Abdullah Abdulaziz Abbod Abdo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
- Department of Food Science and Technology, IBB University, Ibb, Yemen
| | - Benariba Kaddour
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, PR China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Chengyin Wan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| |
Collapse
|