1
|
Cortés-Benítez F, Roy J, Perreault M, Maltais R, Poirier D. 16-Picolyl-androsterone derivative exhibits potent 17β-HSD3 inhibitory activity, improved metabolic stability and cytotoxic effect on various cancer cells: Synthesis, homology modeling and docking studies. J Steroid Biochem Mol Biol 2021; 210:105846. [PMID: 33609690 DOI: 10.1016/j.jsbmb.2021.105846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 11/18/2022]
Abstract
A new androsterone derivative bearing a 16β-picolyl group (compound 5; FCO-586-119) was synthetized in four steps from the lead compound 1 (RM-532-105). We measured its inhibitory activity on 17β-HSD3 using microsomal fraction of rat testes as well as transfected LNCaP[17β-HSD3] cells. We then assessed its metabolic stability as well as its cytotoxic effect against a panel of cancer cell lines. The addition of a picolyl moiety at C-16 of RM-532-105 steroid core improves the 17β-HSD3 inhibitory activity in the microsomal fraction of rat testes, but not in whole LNCaP[17β-HSD3] cells. Interestingly, this structural modification enhances 3-fold the metabolic stability in conjunction with a significant cytotoxic effect against pancreatic, ovarian, breast, lung, and prostate cancer cells. Because the inhibitory activity data against 17β-HSD3 suggested that both steroid derivatives are non-competitive inhibitors, we performed docking and molecular dynamics simulations using a homology model of this membrane-associated enzyme. The results of these simulations revealed that both RM-532-105 (1) and FCO-586-119 (5) can compete for the cofactor-binding site displaying better binding energy than NADP+.
Collapse
Affiliation(s)
- Francisco Cortés-Benítez
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU De Québec - Research Center, Québec City, Québec, G1V 4G2, Canada; Laboratory of Synthesis and Isolation of Bioactive Substances, Department of Biological Systems, Biological and Health Sciences Division, Metropolitan Autonomous University- Xochimilco (UAM-X), Mexico City 04960, Mexico
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU De Québec - Research Center, Québec City, Québec, G1V 4G2, Canada
| | - Martin Perreault
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU De Québec - Research Center, Québec City, Québec, G1V 4G2, Canada
| | - René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU De Québec - Research Center, Québec City, Québec, G1V 4G2, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU De Québec - Research Center, Québec City, Québec, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, G1V 0A6, Canada.
| |
Collapse
|
2
|
Storbeck KH, Mostaghel EA. Canonical and Noncanonical Androgen Metabolism and Activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:239-277. [PMID: 31900912 DOI: 10.1007/978-3-030-32656-2_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Androgens are critical drivers of prostate cancer. In this chapter we first discuss the canonical pathways of androgen metabolism and their alterations in prostate cancer progression, including the classical, backdoor and 5α-dione pathways, the role of pre-receptor DHT metabolism, and recent findings on oncogenic splicing of steroidogenic enzymes. Next, we discuss the activity and metabolism of non-canonical 11-oxygenated androgens that can activate wild-type AR and are less susceptible to glucuronidation and inactivation than the canonical androgens, thereby serving as an under-recognized reservoir of active ligands. We then discuss an emerging literature on the potential non-canonical role of androgen metabolizing enzymes in driving prostate cancer. We conclude by discussing the potential implications of these findings for prostate cancer progression, particularly in context of new agents such as abiraterone and enzalutamide, which target the AR-axis for prostate cancer therapy, including mechanisms of response and resistance and implications of these findings for future therapy.
Collapse
Affiliation(s)
- Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Elahe A Mostaghel
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. .,Department of Medicine, University of Washington, Seattle, WA, USA. .,Geriatric Research, Education and Clinical Center S-182, VA Puget Sound Health Care System, Seattle, WA, USA.
| |
Collapse
|
3
|
Mostaghel EA. Beyond T and DHT - novel steroid derivatives capable of wild type androgen receptor activation. Int J Biol Sci 2014; 10:602-13. [PMID: 24948873 PMCID: PMC4062953 DOI: 10.7150/ijbs.8844] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/23/2014] [Indexed: 12/16/2022] Open
Abstract
While androgen deprivation therapy (ADT) remains the primary treatment for metastatic prostate cancer (PCa), castration does not eliminate androgens from the prostate tumor microenvironment, and residual intratumoral androgens are implicated in nearly every mechanism by which androgen receptor (AR)-mediated signaling promotes castration-resistant disease. The uptake and intratumoral (intracrine) conversion of circulating adrenal androgens such as dehydroepiandrosterone sulfate (DHEA-S) to steroids capable of activating the wild type AR is a recognized driver of castration resistant prostate cancer (CRPC). However, less well-characterized adrenal steroids, including 11-deoxcorticosterone (DOC) and 11beta-hydroxyandrostenedione (11OH-AED) may also play a previously unrecognized role in promoting AR activation. In particular, recent data demonstrate that the 5α-reduced metabolites of DOC and 11OH-AED are activators of the wild type AR. Given the well-recognized presence of SRD5A activity in CRPC tissue, these observations suggest that in the low androgen environment of CRPC, alternative sources of 5α-reduced ligands may supplement AR activation normally mediated by the canonical 5α-reduced agonist, 5α-DHT. Herein we review the emerging data that suggests a role for these alternative steroids of adrenal origin in activating the AR, and discuss the enzymatic pathways and novel downstream metabolites mediating these effects. We conclude by discussing the potential implications of these findings for CRPC progression, particularly in context of new agents such as abiraterone and enzalutamide which target the AR-axis for prostate cancer therapy.
Collapse
Affiliation(s)
- Elahe A Mostaghel
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle WA, USA
| |
Collapse
|
4
|
Abstract
17-Hydroxyprogesterone (17-OHP) is an intermediate steroid in the adrenal biosynthetic pathway from cholesterol to cortisol and is the substrate for steroid 21-hydroxylase. An inherited deficiency of 21-hydroxylase leads to greatly increased serum concentrations of 17-OHP, while the absence of cortisol synthesis causes an increase in adrenocorticotrophic hormone. The classical congenital adrenal hyperplasia (CAH) presents usually with virilisation of a girl at birth. Affected boys and girls can have renal salt loss within a few days if aldosterone production is also compromised. Diagnosis can be delayed in boys. A non-classical form of congenital adrenal hyperplasia (NC-CAH) presents later in life usually with androgen excess. Moderately raised or normal 17-OHP concentrations can be seen basally but, if normal and clinical suspicion is high, an ACTH stimulation test will show 17-OHP concentrations (typically >30 nmol/L) above the normal response. NC-CAH is more likely to be detected clinically in females and may be asymptomatic particularly in males until families are investigated. The prevalence of NC-CAH in women with androgen excess can be up to 9% according to ethnic background and genotype. Mutations in the 21-hydroxylase genes in NC-CAH can be found that have less deleterious effects on enzyme activity. Other less-common defects in enzymes of cortisol synthesis can be associated with moderately elevated 17-OHP. Precocious puberty, acne, hirsutism and subfertility are the commonest features of hyperandrogenism. 17-OHP is a diagnostic marker for CAH but opinions differ on the role of 17OHP or androstenedione in monitoring treatment with renin in the salt losing form. This review considers the utility of 17-OHP measurements in children, adolescents and adults.
Collapse
Affiliation(s)
- John W Honour
- Institute of Women’s Health, University College London, London, UK
| |
Collapse
|
5
|
Rižner TL, Penning TM. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism. Steroids 2014; 79:49-63. [PMID: 24189185 PMCID: PMC3870468 DOI: 10.1016/j.steroids.2013.10.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/16/2013] [Accepted: 10/24/2013] [Indexed: 12/30/2022]
Abstract
Human aldo-keto reductases AKR1C1-AKR1C4 and AKR1D1 play essential roles in the metabolism of all steroid hormones, the biosynthesis of neurosteroids and bile acids, the metabolism of conjugated steroids, and synthetic therapeutic steroids. These enzymes catalyze NADPH dependent reductions at the C3, C5, C17 and C20 positions on the steroid nucleus and side-chain. AKR1C1-AKR1C4 act as 3-keto, 17-keto and 20-ketosteroid reductases to varying extents, while AKR1D1 acts as the sole Δ(4)-3-ketosteroid-5β-reductase (steroid 5β-reductase) in humans. AKR1 enzymes control the concentrations of active ligands for nuclear receptors and control their ligand occupancy and trans-activation, they also regulate the amount of neurosteroids that can modulate the activity of GABAA and NMDA receptors. As such they are involved in the pre-receptor regulation of nuclear and membrane bound receptors. Altered expression of individual AKR1C genes is related to development of prostate, breast, and endometrial cancer. Mutations in AKR1C1 and AKR1C4 are responsible for sexual development dysgenesis and mutations in AKR1D1 are causative in bile-acid deficiency.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia.
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Andersen ML, Alvarenga TF, Mazaro-Costa R, Hachul HC, Tufik S. The association of testosterone, sleep, and sexual function in men and women. Brain Res 2011; 1416:80-104. [PMID: 21890115 DOI: 10.1016/j.brainres.2011.07.060] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 07/29/2011] [Accepted: 07/30/2011] [Indexed: 11/29/2022]
Abstract
Testosterone has been the focus of several investigations and review studies in males, but few have addressed its effects on sleep and sexual function, despite evidence of its androgenic effects on circadian activity in both sexes. Studies have been conducted to understand how sleeping increases (and how waking decreases) testosterone levels and how this rhythm can be related to sexual function. This review addresses the inter-relationships among testosterone, sexual function and sleep, including sleep-disordered breathing in both sexes, specifically its effects related to sleep deprivation. In addition, hormonal changes in testosterone that occur in the gonadal and adrenal axis with obstructive sleep apnea and other conditions of chronic sleep deprivation, and which consequently affect sexual life, have also been explored. Nevertheless, hormone-associated sleep disruptions occur across a lifetime, particularly in women. The association between endogenous testosterone and sex, sleep and sleep disturbances is discussed, including the results of clinical trials as well as animal model studies. Evidence of possible pathophysiological mechanisms underlying this relationship is also described. Unraveling the associations of sex steroid hormone concentrations with sleep and sexual function may have clinical implications, as sleep loss reduces testosterone levels in males, and low sex steroid hormone concentrations have been associated with sexual dysfunction.
Collapse
Affiliation(s)
- Monica L Andersen
- Departmento de Psicobiologia, Universidade Federal de São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
7
|
Witchel SF, Azziz R. Congenital adrenal hyperplasia. J Pediatr Adolesc Gynecol 2011; 24:116-26. [PMID: 21601808 DOI: 10.1016/j.jpag.2010.10.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 11/26/2022]
Abstract
Congenital adrenal hyperplasia (CAH) due to P450c21 (21-hydroxylase deficiency) is a common autosomal recessive disorder. This disorder is due to mutations in the CYP21A2 gene which is located at chromosome 6p21. The clinical features reflect the magnitude of the loss of function mutations. Individuals with complete loss of function mutations usually present in the neonatal period. The clinical features of individuals with mild loss of function mutations are predominantly due to androgen excess rather than adrenal insufficiency leading to an ascertainment bias favoring diagnosis in females. Treatment goals include normal linear growth velocity and "on-time" puberty in affected children. For adolescent and adult women, treatment goals include regularization of menses, prevention of progression of hirsutism, and fertility. This article will review key aspects regarding pathophysiology, diagnosis, and treatment of CAH.
Collapse
Affiliation(s)
- Selma Feldman Witchel
- Division of Pediatric Endocrinology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | |
Collapse
|
8
|
Mohler JL, Titus MA, Bai S, Kennerley BJ, Lih FB, Tomer KB, Wilson EM. Activation of the androgen receptor by intratumoral bioconversion of androstanediol to dihydrotestosterone in prostate cancer. Cancer Res 2011; 71:1486-96. [PMID: 21303972 DOI: 10.1158/0008-5472.can-10-1343] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The androgen receptor (AR) mediates the growth of benign and malignant prostate in response to dihydrotestosterone (DHT). In patients undergoing androgen deprivation therapy for prostate cancer, AR drives prostate cancer growth despite low circulating levels of testicular androgen and normal levels of adrenal androgen. In this report, we demonstrate the extent of AR transactivation in the presence of 5α-androstane-3α,17β-diol (androstanediol) in prostate-derived cell lines parallels the bioconversion of androstanediol to DHT. AR transactivation in the presence of androstanediol in prostate cancer cell lines correlated mainly with mRNA and protein levels of 17β-hydroxysteroid dehydrogenase 6 (17β-HSD6), one of several enzymes required for the interconversion of androstanediol to DHT and the inactive metabolite androsterone. Levels of retinol dehydrogenase 5, and dehydrogenase/reductase short-chain dehydrogenase/reductase family member 9, which also convert androstanediol to DHT, were lower than 17β-HSD6 in prostate-derived cell lines and higher in the castration-recurrent human prostate cancer xenograft. Measurements of tissue androstanediol using mass spectrometry demonstrated androstanediol metabolism to DHT and androsterone. Administration of androstanediol dipropionate to castration-recurrent CWR22R tumor-bearing athymic castrated male mice produced a 28-fold increase in intratumoral DHT levels. AR transactivation in prostate cancer cells in the presence of androstanediol resulted from the cell-specific conversion of androstanediol to DHT, and androstanediol increased LAPC-4 cell growth. The ability to convert androstanediol to DHT provides a mechanism for optimal utilization of androgen precursors and catabolites for DHT synthesis.
Collapse
Affiliation(s)
- James L Mohler
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Witchel SF, Azziz R. Nonclassic congenital adrenal hyperplasia. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2010; 2010:625105. [PMID: 20671993 PMCID: PMC2910408 DOI: 10.1155/2010/625105] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 04/05/2010] [Indexed: 11/26/2022]
Abstract
Nonclassic congenital adrenal hyperplasia (NCAH) due to P450c21 (21-hydroxylase deficiency) is a common autosomal recessive disorder. This disorder is due to mutations in the CYP21A2 gene which is located at chromosome 6p21. The clinical features predominantly reflect androgen excess rather than adrenal insufficiency leading to an ascertainment bias favoring diagnosis in females. Treatment goals include normal linear growth velocity and "on-time" puberty in affected children. For adolescent and adult women, treatment goals include regularization of menses, prevention of progression of hirsutism, and fertility. This paper will review key aspects regarding pathophysiology, diagnosis, and treatment of NCAH.
Collapse
Affiliation(s)
- Selma Feldman Witchel
- Division of Pediatric Endocrinology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Ricardo Azziz
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Obstetrics and Gynecology, and Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Current Opinion in Endocrinology, Diabetes & Obesity. Current world literature. Curr Opin Endocrinol Diabetes Obes 2010; 17:293-312. [PMID: 20418721 DOI: 10.1097/med.0b013e328339f31e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Witchel S, Azziz R. NonClassic Congenital Adrenal Hyperplasia. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2010. [DOI: 10.1186/1687-9856-2010-625105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|