1
|
Mao P, Xing L, He B, Deng T, Qin Y, Hu Y, An Y, Xue W. Antiviral activity evaluation and action mechanism of chalcone derivatives containing phenoxypyridine. Mol Divers 2024:10.1007/s11030-024-10843-7. [PMID: 38584199 DOI: 10.1007/s11030-024-10843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
In this paper, a series of phenoxypyridine-containing chalcone derivatives (L1-L28) were designed and synthesized, characterized on NMR and HRMS. Ningnanmycin (NNM) was used as a control agent. The results of the antiviral activity testing showed that the curative activity EC50 values of L1 and L4 against TMV were 140.5 and 90.7 μg/mL, respectively, which were superior to that of NNM (148.3 μg/mL). The EC50 values of 154.1, 102.6 and 140.0 μg/mL for the anti-TMV protective activities of L1, L4 and L15 were superior to that of NNM (188.2 μg/mL). The mechanism of action between L4 and NNM and tobacco mosaic virus capsid protein (TMV-CP) was preliminarily investigated. The results of microscale thermophoresis (MST) experiments showed that L4 had a strong binding affinity for TMV-CP with a dissociation constant Kd value of 0.00149 µM, which was better than that of NNM (2.73016 µM). The results of molecular docking experiments showed that L4 formed shorter hydrogen bonds with amino acid residues of TMV-CP than NNM and formed more amino acid residues than NNM, which indicated that L4 was more tightly bound to TMV-CP. This study suggested that phenoxypyridine-containing chalcone derivatives can be used as new anti-TMV drugs through further research and development.
Collapse
Affiliation(s)
- Piao Mao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Li Xing
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Bangcan He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Tianyu Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Yishan Qin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Yuzhi Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Youshan An
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Mezgebe K, Melaku Y, Mulugeta E. Synthesis and Pharmacological Activities of Chalcone and Its Derivatives Bearing N-Heterocyclic Scaffolds: A Review. ACS OMEGA 2023; 8:19194-19211. [PMID: 37305270 PMCID: PMC10249103 DOI: 10.1021/acsomega.3c01035] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/05/2023] [Indexed: 06/13/2023]
Abstract
The incorporation of heterocyclic moieties into the standard chemical structure with a biologically active scaffold has become of crucial practice for the construction of pharmacologically potent candidates in the drug arena. Currently, numerous kinds of chalcones and their derivatives have been synthesized using the incorporation of heterocyclic scaffolds, especially chalcones bearing heterocyclic moieties that display improved efficiency and potential for drug production in pharmaceutical sectors. The current Review focuses on recent advances in the synthetic approaches and pharmacological activities such as antibacterial, antifungal, antitubercular, antioxidant, antimalarial, anticancer, anti-inflammatory, antigiardial, and antifilarial activities of chalcone derivatives incorporating N-heterocyclic moieties at either the A-ring or B-ring.
Collapse
|
3
|
Jesus A, Durães F, Szemerédi N, Freitas-Silva J, da Costa PM, Pinto E, Pinto M, Spengler G, Sousa E, Cidade H. BDDE-Inspired Chalcone Derivatives to Fight Bacterial and Fungal Infections. Mar Drugs 2022; 20:md20050315. [PMID: 35621966 PMCID: PMC9147945 DOI: 10.3390/md20050315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
The growing number of infectious diseases around the world threatens the effective response of antibiotics, contributing to the increase in antibiotic resistance seen as a global health problem. Currently, one of the main challenges in antimicrobial drug discovery is the search for new compounds that not only exhibit antimicrobial activity, but can also potentiate the antimicrobial activity and revert antibiotics’ resistance, through the interference with several mechanisms, including the inhibition of efflux pumps (EPs) and biofilm formation. Inspired by macroalgae brominated bromophenol BDDE with antimicrobial activity, a series of 18 chalcone derivatives, including seven chalcones (9–15), six dihydrochalcones (16–18, and 22–24) and five diarylpropanes (19–21, and 25 and 26), was prepared and evaluated for its antimicrobial activity and potential to fight antibiotic resistance. Among them, chalcones 13 and 14 showed promising antifungal activity against the dermatophyte clinical strain of Trichophyton rubrum, and all compounds reversed the resistance to vancomycin in Enterococcus faecalis B3/101, with 9, 14, and 24 able to cause a four-fold decrease in the MIC of vancomycin against this strain. Compounds 17–24 displayed inhibition of EPs and the formation of biofilm by S. aureus 272123, suggesting that these compounds are inhibiting the EPs responsible for the extrusion of molecules involved in biofilm-related mechanisms. Interestingly, compounds 17–24 did not show cytotoxicity in mouse embryonic fibroblast cell lines (NIH/3T3). Overall, the results obtained suggest the potential of dihydrochalcones 16–18 and 22–24, and diarylpropanes 19–21, 25 and 26, as hits for bacterial EPs inhibition, as they are effective in the inhibition of EPs, but present other features that are important in this matter, such as the lack of antibacterial activity and cytotoxicity.
Collapse
Affiliation(s)
- Ana Jesus
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.J.); (F.D.); (M.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.F.-S.); (P.M.d.C.); (E.P.)
| | - Fernando Durães
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.J.); (F.D.); (M.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.F.-S.); (P.M.d.C.); (E.P.)
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary; (N.S.); (G.S.)
| | - Joana Freitas-Silva
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.F.-S.); (P.M.d.C.); (E.P.)
- ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo Martins da Costa
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.F.-S.); (P.M.d.C.); (E.P.)
- ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Eugénia Pinto
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.F.-S.); (P.M.d.C.); (E.P.)
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.J.); (F.D.); (M.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.F.-S.); (P.M.d.C.); (E.P.)
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary; (N.S.); (G.S.)
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.J.); (F.D.); (M.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.F.-S.); (P.M.d.C.); (E.P.)
- Correspondence: (E.S.); (H.C.)
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.J.); (F.D.); (M.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal; (J.F.-S.); (P.M.d.C.); (E.P.)
- Correspondence: (E.S.); (H.C.)
| |
Collapse
|
4
|
Novel Ti/Al(OH)3 and Fe/Al(OH)3 Nano Catalyzed 4-Acetamidophenyl 3-((Z)-but-2-enoyl)phenylcarbamate Synthesis and its Molecular Docking, Quantum Chemical Studies. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Kuzu B, Tan M, Gülçin İ, Menges N. A novel class for carbonic anhydrases inhibitors and evaluation of their non-zinc binding. Arch Pharm (Weinheim) 2021; 354:e2100188. [PMID: 34096646 DOI: 10.1002/ardp.202100188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 11/06/2022]
Abstract
In this study, 23 different imidazole derivatives were synthesized, and the inhibitory properties of these derivatives against carbonic anhydrase I and II isoenzymes were investigated for the first time. The inhibition concentrations of the imidazole derivatives were found to be in the range of 2.89-115.5 nM. Docking studies examined the binding properties of the imidazole derivatives, and the structure-activity relationship is discussed. Theoretical calculations showed that the binding mode of the imidazole ring was non-zinc binding.
Collapse
Affiliation(s)
- Burak Kuzu
- Pharmaceutical Chemistry Section, Van Yüzüncü Yil University, Van, Turkey
| | - Meltem Tan
- Pharmaceutical Chemistry Section, Van Yüzüncü Yil University, Van, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Nurettin Menges
- Pharmaceutical Chemistry Section, Van Yüzüncü Yil University, Van, Turkey
| |
Collapse
|
6
|
Vengatesh G, Sundaravadivelu M, Muthusubramanian S. Ring opening of 2,6‐diaryl‐3,5‐diphenyl piperidine‐4‐one by acetic acid: Structural studies and Hirshfeld surface analysis of (
E
)‐4‐aryl‐1,3‐diphenylbut‐3‐en‐2‐ones. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gopal Vengatesh
- Department of Chemistry The Gandhigram Rural Institute (Deemed to be University) Gandhigram India
| | | | | |
Collapse
|
7
|
A novel method for the synthesis and characterization of 10-hexyl-3-(1-hexyl-4, 5-diphenyl-1H-imidazol-2-yl)-10H-phenothiazine: DFT computational, in vitro anticancer and in silico molecular docking studies. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04297-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Liu Y, Dang Y, Yin D, Yang L, Zou Q. Design, conventional and microwave irradiated synthesis and characterization of some novel Mannich bases containing imidazole[2,1-b]-1,3,4-oxadiazole core. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Zhai S, Zhou W, Dai X, Yang S, Qian J, Sun F, He M, Chen Q. Efficient Synthesis of α,β
-Unsaturated Ketones from Primary Alcohols and Ketones over Mg 2+
-Modified NiGa Hydrotalcites. ChemistrySelect 2018. [DOI: 10.1002/slct.201801862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shaoyan Zhai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology; Changzhou University; Changzhou 213164 P.R. China
| | - Weiyou Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology; Changzhou University; Changzhou 213164 P.R. China
| | - Xuan Dai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology; Changzhou University; Changzhou 213164 P.R. China
| | - Song Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology; Changzhou University; Changzhou 213164 P.R. China
| | - Junfeng Qian
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology; Changzhou University; Changzhou 213164 P.R. China
| | - Fu'an Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology; Changzhou University; Changzhou 213164 P.R. China
| | - Mingyang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology; Changzhou University; Changzhou 213164 P.R. China
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology; Changzhou University; Changzhou 213164 P.R. China
| |
Collapse
|
10
|
Quantitative correlations between collision induced dissociation mass spectrometry coupled with electrospray ionization or atmospheric pressure chemical ionization mass spectrometry – Experiment and theory. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.12.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Synthesis and molecular docking studies of novel 1,2,3-triazole ring-containing 4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenol derivatives as COX inhibitors. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3113-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
New chalcones bearing isatin scaffold: synthesis, molecular modeling and biological evaluation as anticancer agents. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3019-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
|
14
|
Zhang Z, Wang Y, Wang M, Lu J, Zhang C, Li L, Jiang J, Wang F. The cascade synthesis of α,β-unsaturated ketones via oxidative C–C coupling of ketones and primary alcohols over a ceria catalyst. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01607j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We herein report the oxidative C–C coupling of ketones and primary alcohols to produce α,β-unsaturated ketones in the absence of base additives.
Collapse
Affiliation(s)
- Zhixin Zhang
- State Key Laboratory of Fine Chemicals
- College of Chemistry
- Faculty of Chemical Environmental and Biological Science and Technology
- Dalian University of Technology
- Dalian 116024
| | - Yehong Wang
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Min Wang
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Jianmin Lu
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Chaofeng Zhang
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Lihua Li
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Jingyang Jiang
- State Key Laboratory of Fine Chemicals
- College of Chemistry
- Faculty of Chemical Environmental and Biological Science and Technology
- Dalian University of Technology
- Dalian 116024
| | - Feng Wang
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| |
Collapse
|
15
|
M Flefel E, S Abbas HA, E Abdel Mageid R, A Zaghary W. Synthesis and Cytotoxic Effect of Some Novel 1,2-Dihydropyridin-3-carbonitrile and Nicotinonitrile Derivatives. Molecules 2015; 21:E30. [PMID: 26729087 PMCID: PMC6272992 DOI: 10.3390/molecules21010030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 12/18/2022] Open
Abstract
1-(2,4-Dichlorophenyl)-3-(4-fluorophenyl)propen-1-one (1) was prepared and reacted with an active methylene compound (ethyl cyanoacetate) in the presence of ammonium acetate to give the corresponding cyanopyridone 2. Compound 2 reacted with hydrazine hydrate, malononitrile, ethyl bromoacetate and phosphorous oxychloride to afford compounds 4 and 7–11, respectively. The 2-chloropyridine derivative 11 reacted with different primary amines, namely benzyl amine, piperonyl amine, 1-phenylethyl amine, and/or the secondary amines 2-methyl-pipridine and morpholine to give the corresponding derivatives 12–15. Hydrazinolysis of chloropyridine derivative 11 with hydrazine hydrate afforded the corresponding hydrazino derivative 17. Condensation of compound 17 with ethyl acetoacetate, acetylacetone, isatin and different aldehydes gave the corresponding derivatives 18–21. Some of newly synthesized compounds were screened for cytotoxic activity against three tumor cell lines. The results indicated that compounds 8 and 16 showed the best results, exhibiting the highest inhibitory effects towards the three tumor cell lines, which were higher than that of the reference doxorubicin and these compounds were non-cytotoxic towards normal cells (IC50 values > 100 μg/mL).
Collapse
Affiliation(s)
- Eman M Flefel
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Monawarah 1343, Saudi Arabia.
- Department of Photochemistry, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Hebat-Allah S Abbas
- Department of Photochemistry, National Research Centre, Dokki, Cairo 12622, Egypt.
- Department of Chemistry, College of Science, King Khalid University, Abha 9004, Saudi Arabia.
| | - Randa E Abdel Mageid
- Department of Photochemistry, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Wafaa A Zaghary
- Department of Pharmaceutical Chemistry, College of Pharmacy, Helwan University, Ain Helwan, Cairo 11795, Egypt.
| |
Collapse
|
16
|
Abbas A, Kalsoom S, Hadda TB, Naseer MM. Evaluation of 4-alkoxychalcones as a new class of antiglycating agents: a combined experimental and docking study. RESEARCH ON CHEMICAL INTERMEDIATES 2014. [DOI: 10.1007/s11164-014-1752-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Menteşe E, Yılmaz F. Efficient Microwave-Assisted Synthesis of N-(2-Alkyl/aryl-4-phenyl-1H-imidazol-1-yl)-2-phenylacetamides. SYNTHETIC COMMUN 2014. [DOI: 10.1080/00397911.2014.895382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Emre Menteşe
- a Department of Chemistry , Recep Tayyip Erdogan University , Rize , Turkey
| | - Fatih Yılmaz
- a Department of Chemistry , Recep Tayyip Erdogan University , Rize , Turkey
| |
Collapse
|
18
|
Gómez-Rivera A, Aguilar-Mariscal H, Romero-Ceronio N, Roa-de la Fuente LF, Lobato-García CE. Synthesis and anti-inflammatory activity of three nitro chalcones. Bioorg Med Chem Lett 2013; 23:5519-22. [DOI: 10.1016/j.bmcl.2013.08.061] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 08/13/2013] [Indexed: 11/26/2022]
|
19
|
(E)-2-Benzylidene-7-chloro-9-phenyl-3,4-dihydroacridin-1(2H)-ones: synthesis and larvicidal activity. RESEARCH ON CHEMICAL INTERMEDIATES 2013. [DOI: 10.1007/s11164-013-1359-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Zhang L, Peng XM, Damu GLV, Geng RX, Zhou CH. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med Res Rev 2013; 34:340-437. [PMID: 23740514 DOI: 10.1002/med.21290] [Citation(s) in RCA: 482] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Imidazole ring is an important five-membered aromatic heterocycle widely present in natural products and synthetic molecules. The unique structural feature of imidazole ring with desirable electron-rich characteristic is beneficial for imidazole derivatives to readily bind with a variety of enzymes and receptors in biological systems through diverse weak interactions, thereby exhibiting broad bioactivities. The related research and developments of imidazole-based medicinal chemistry have become a rapidly developing and increasingly active topic. Particularly, numerous imidazole-based compounds as clinical drugs have been extensively used in the clinic to treat various types of diseases with high therapeutic potency, which have shown the enormous development value. This work systematically gives a comprehensive review in current developments of imidazole-based compounds in the whole range of medicinal chemistry as anticancer, antifungal, antibacterial, antitubercular, anti-inflammatory, antineuropathic, antihypertensive, antihistaminic, antiparasitic, antiobesity, antiviral, and other medicinal agents, together with their potential applications in diagnostics and pathology. It is hoped that this review will be helpful for new thoughts in the quest for rational designs of more active and less toxic imidazole-based medicinal drugs, as well as more effective diagnostic agents and pathologic probes.
Collapse
Affiliation(s)
- Ling Zhang
- Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | | | | | | | | |
Collapse
|