1
|
Welleman IM, Reeβing F, Boersma HH, Dierckx RAJO, Feringa BL, Szymanski W. The Development of a Smart Magnetic Resonance Imaging and Chemical Exchange Saturation Transfer Contrast Agent for the Imaging of Sulfatase Activity. Pharmaceuticals (Basel) 2023; 16:1439. [PMID: 37895910 PMCID: PMC10610007 DOI: 10.3390/ph16101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The molecular imaging of biomarkers plays an increasing role in medical diagnostics. In particular, the imaging of enzyme activity is a promising approach, as it enables the use of its inherent catalytic activity for the amplification of an imaging signal. The increased activity of a sulfatase enzyme has been observed in several types of cancers. We describe the development and in vitro evaluation of molecular imaging agents that allow for the detection of sulfatase activity using the whole-body, non-invasive MRI and CEST imaging methods. This approach relies on a responsive ligand that features a sulfate ester moiety, which upon sulfatase-catalyzed hydrolysis undergoes an elimination process that changes the functional group, coordinating with the metal ion. When Gd3+ is used as the metal, the complex can be used for MRI, showing a 25% decrease at 0.23T and a 42% decrease at 4.7T in magnetic relaxivity after enzymatic conversion, thus providing a "switch-off" contrast agent. Conversely, the use of Yb3+ as the metal leads to a "switch-on" effect in the CEST imaging of sulfatase activity. Altogether, the results presented here provide a molecular basis and a proof-of-principle for the magnetic imaging of the activity of a key cancer biomarker.
Collapse
Affiliation(s)
- Ilse M. Welleman
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (I.M.W.)
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Friederike Reeβing
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (I.M.W.)
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hendrikus H. Boersma
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (I.M.W.)
- Department of Clinical Pharmacy and Pharmacology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Rudi A. J. O. Dierckx
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (I.M.W.)
| | - Ben L. Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Wiktor Szymanski
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (I.M.W.)
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Gadroy C, Boukraa R, Battaglini N, Le Derf F, Mofaddel N, Vieillard J, Piro B. An Electrolyte-Gated Graphene Field-Effect Transistor for Detection of Gadolinium(III) in Aqueous Media. BIOSENSORS 2023; 13:363. [PMID: 36979575 PMCID: PMC10046572 DOI: 10.3390/bios13030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
In this work, an electrolyte-gated graphene field-effect transistor is developed for Gd3+ ion detection in water. The source and drain electrodes of the transistor are fabricated by photolithography on polyimide, while the graphene channel is obtained by inkjet-printing a graphene oxide ink subsequently electro-reduced to give reduced graphene oxide. The Gd3+-selective ligand DOTA is functionalized by an alkyne linker to be grafted by click chemistry on a gold electrode without losing its affinity for Gd3+. The synthesis route is fully described, and the ligand, the linker and the functionalized surface are characterized by electrochemical analysis and spectroscopy. The as functionalized electrode is used as gate in the graphene transistor so to modulate the source-drain current as a function of its potential, which is itself modulated by the concentration of Gd3+captured on the gate surface. The obtained sensor is able to quantify Gd3+ even in a sample containing several other potentially interfering ions such as Ni2+, Ca2+, Na+ and In3+. The quantification range is from 1 pM to 10 mM, with a sensitivity of 20 mV dec-1 expected for a trivalent ion. This paves the way for Gd3+ quantification in hospital or industrial wastewater.
Collapse
Affiliation(s)
- Charlène Gadroy
- Université de Rouen-Normandie, Campus d’Evreux, UMR-CNRS 6014, F-27000 Evreux, France
| | - Rassen Boukraa
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| | | | - Franck Le Derf
- Université de Rouen-Normandie, Campus d’Evreux, UMR-CNRS 6014, F-27000 Evreux, France
| | - Nadine Mofaddel
- Université de Rouen-Normandie, Campus d’Evreux, UMR-CNRS 6014, F-27000 Evreux, France
| | - Julien Vieillard
- Université de Rouen-Normandie, Campus d’Evreux, UMR-CNRS 6014, F-27000 Evreux, France
| | - Benoît Piro
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| |
Collapse
|
3
|
Hee C, Ho D, Karton A, Nealon G, Kretzmann JA, Norret M, Iyer KS. Macromolecular approach for targeted radioimmunotherapy in non-Hodgkin's lymphoma. Chem Commun (Camb) 2019; 55:14506-14509. [PMID: 31735949 DOI: 10.1039/c9cc06603a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymers are an attractive anchoring platform for the synthesis of radioimmunoconjugates. They enable independent control over the amount of radioisotope loading and antibody attachment, which is pivotal in developing tailorable formulations for personalised medicine. Herein, we report the synthesis of p(HEMA-ran-GMA) for the conjugation of lutetium ions and rituximab as a functional platform for radioimmunotherapy. We demonstrate the suitability of this platform using non-Hodgkin's lymphoma cells.
Collapse
Affiliation(s)
- Charmaine Hee
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia.
| | | | | | | | | | | | | |
Collapse
|