1
|
Bodaghifard MA, Allahbakhshi H, Ahangarani-Farahani R. Efficient synthesis of benzoacridines and indenoquinolines catalyzed by acidic magnetic dendrimer. Sci Rep 2024; 14:8736. [PMID: 38627463 PMCID: PMC11021454 DOI: 10.1038/s41598-024-59212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
A novel solid acid catalyst with recoverability, named as Fe3O4@SiO2@TAD-G2-SO3H, was successfully synthesized by immobilizing sulfonic acid groups on triazine dendrimer-modified magnetic nanoparticles. This nanomaterial structure and composition were thoroughly characterized using various analytical techniques, including thermogravimetric analysis (TGA), elemental analysis, Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX), elemental mapping, acid-base titration, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The acid-decorated magnetic dendrimer was served as a highly effective catalyst for the synthesis of tetrahydrobenzo[c]acridin-8(9H)-one and benzo[h]indeno[1,2-b]quinoline-8-one derivatives. The reaction proceeded smoothly under mild conditions through the one-pot condensation of aromatic aldehydes, 1-naphthylamine, and either dimedone or 1,3-indanedione, affording the desired products in high yields ranging from 90 to 96%. The catalyst was easily separated from the reaction mixture by employing a magnetic field, allowing for its recycling up to five times with slight loss in its activity (only 10%). Nearly, quantitative recovery of catalyst (up to 95%) could be obtained from each run. So, this catalyst facilitates the reaction progress and simplifies the purification process. Other remarkable features of this method are operational simplicity, excellent yields, mild condition, and a wide range of substrate applicability.
Collapse
Affiliation(s)
- Mohammad Ali Bodaghifard
- Department of Chemistry, Faculty of Science, Arak University, 384817758, Arak, Iran.
- Institute of Nanosciences and Nanotechnology, Arak University, 384817758, Arak, Iran.
| | - Hanieh Allahbakhshi
- Department of Chemistry, Faculty of Science, Arak University, 384817758, Arak, Iran
| | | |
Collapse
|
2
|
Jiang S, Shen M, Sheykhahmad FR. Fe3O4@urea/HITh-SO3H as an efficient and reusable catalyst for the solvent-free synthesis of 7-aryl-8H-benzo[h]indeno[1,2-b]quinoline-8-one and indeno[2′,1′:5,6]pyrido[2,3-d]pyrimidine derivatives. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractIn this study, Fe3O4@urea/HITh-SO3H MNPs as a new, efficient, and recyclable solid acid magnetic nanocatalyst was synthesized and characterized using various methods including Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, energy-dispersive X-ray spectroscopy, and X-ray powder diffraction. After the characterization of this new magnetic nanocatalyst, it was efficiently utilized for the promotion of the one-pot synthesis of 7-aryl-8H-benzo[h]indeno[1,2-b]quinoline-8-one and indeno[2′,1′:5,6]pyrido[2,3-d]pyrimidine derivatives via three-component reaction of the 1,3-indanedione, aldehyde, and 1-naphthylamine/1,3-dimethyl-6-aminouracil under solvent-free conditions at 80°C. The procedure gave the desired heterocyclic structures in high-to-excellent yields and short reaction times. Also because of the magnetic nature of the nanocatalyst, it can be separated with an external magnetic field and reused at least six runs without any considerable decrease in the catalytic behavior.
Collapse
Affiliation(s)
- Shenghao Jiang
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02318, United States of America
| | - Macheng Shen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77, Massachusetts Ave, Cambridge, MA 02139, United States of America
| | | |
Collapse
|
3
|
Dayal N, Opoku-Temeng C, Mohammad H, Abutaleb NS, Hernandez D, Onyedibe KI, Wang M, Zeller M, Seleem MN, Sintim HO. Inhibitors of Intracellular Gram-Positive Bacterial Growth Synthesized via Povarov-Doebner Reactions. ACS Infect Dis 2019; 5:1820-1830. [PMID: 31512848 DOI: 10.1021/acsinfecdis.9b00022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Staphylococcus aureus can survive both inside and outside of phagocytic and nonphagocytic host cells. Once in the intracellular milieu, most antibiotics have reduced ability to kill S. aureus, thus resulting in relapse of infection. Consequently, there is a need for antibacterial agents that can accumulate to lethal concentrations within host cells to clear intracellular infections. We have identified tetrahydrobenzo[a or c]phenanthridine and tetrahydrobenzo[a or c]acridine compounds, synthesized via a one-flask Povarov-Doebner operation from readily available amines, aldehydes, and cyclic ketones, as potent agents against drug-resistant S. aureus. Importantly, the tetrahydrobenzo[a or c]phenanthridine and tetrahydrobenzo[a or c]acridine compounds can accumulate in macrophage cells and reduce the burden of intracellular MRSA better than the drug of choice, vancomycin. We observed that MRSA could not develop resistance (by passage 30) against tetrahydrobenzo[a or c]acridine compound 15. Moreover, tetrahydrobenzo[c]acridine compound 15 and tetrahydrobenzo[c]phenanthridine compound 16 were nontoxic to red blood cells and were nonmutagenic. Preliminary data indicated that compound 16 reduced bacterial load (MRSA USA300) in mice (thigh infection model) to the same degree as vancomycin. These observations suggest that compounds 15 and 16 and analogues thereof could become therapeutic agents for the treatment of chronic MRSA infections.
Collapse
Affiliation(s)
- Neetu Dayal
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Clement Opoku-Temeng
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
- Chemistry and Biochemistry Department, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Haroon Mohammad
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Nader S. Abutaleb
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Delmis Hernandez
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Kenneth Ikenna Onyedibe
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana 47907, United States
| | - Modi Wang
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Matthias Zeller
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, 625 Harrison Street, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana 47907, United States
| | - Herman O. Sintim
- Chemistry Department, Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Sudhan PN, Ghashang M, Mansoor SS. Tribromo melamine-catalyzed one-pot synthesis of a series of 4-aryl-4,5-dihydro-1H-indeno[1,2-b]pyridine derivatives. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2015.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Prasanna Nithiya Sudhan
- Bioactive Organic Molecule Synthetic Unit, Research Department of Chemistry, C. Abdul Hakeem College (Autonomous), Melvisharam, Tamil Nadu, 632 509, India
| | - Majid Ghashang
- Faculty of Sciences, Najafabad Branch, Islamic Azad University, Najafabad, Esfahan, Iran
| | - Syed Sheik Mansoor
- Bioactive Organic Molecule Synthetic Unit, Research Department of Chemistry, C. Abdul Hakeem College (Autonomous), Melvisharam, Tamil Nadu, 632 509, India
| |
Collapse
|
6
|
Ghashang M, Guhanathan S, Mansoor SS. Nano Fe2O3@SiO2–SO3H: efficient catalyst for the multi-component preparation of indeno[2′,1′:5,6]pyrido[2,3-d]pyrimidine-2,4,6(3H)-trione derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3073-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Maleki A, Nooraie Yeganeh N. Facile one-pot synthesis of a series of 7-aryl-8H
-benzo[h
]indeno[1,2-b
]quinoline-8-one derivatives catalyzed by cellulose-based magnetic nanocomposite. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3814] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry; Iran University of Science and Technology; Tehran 16846-13114 Iran
| | - Narges Nooraie Yeganeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry; Iran University of Science and Technology; Tehran 16846-13114 Iran
| |
Collapse
|