1
|
Hu C, Wu Y, Dong Z, Dong Z, Ji S, Hu L, Yang X, Liu H. Degradation of carbamazepine by the UVA-LED 365/ClO 2/NaClO process: Kinetics, mechanisms and DBPs yield. J Environ Sci (China) 2025; 148:399-408. [PMID: 39095175 DOI: 10.1016/j.jes.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 08/04/2024]
Abstract
A mixed oxidant of chlorine dioxide (ClO2) and NaClO was often used in water treatment. A novel UVA-LED (365 nm)-activated mixed ClO2/NaClO process was proposed for the degradation of micropollutants in this study. Carbamazepine (CBZ) was selected as the target pollutant. Compared with the UVA365/ClO2 process, the UVA365/ClO2/NaClO process can improve the degradation of CBZ, with the rate constant increasing from 2.11×10-4 sec-1 to 2.74×10-4 sec-1. In addition, the consumption of oxidants in the UVA365/ClO2/NaClO process (73.67%) can also be lower than that of UVA365/NaClO (86.42%). When the NaClO ratio increased, both the degradation efficiency of CBZ and the consumption of oxidants can increase in the UVA365/ClO2/NaClO process. The solution pH can affect the contribution of NaClO in the total oxidant ratio. When the pH range of 6.0-8.0, the combination process can generate more active species to promote the degradation of CBZ. The change of active species with oxidant molar ratio was investigated in the UVA365/ClO2/NaClO process. When ClO2 acted as the main oxidant, HO• and Cl• were the main active species, while when NaClO was the main oxidant, ClO• played a role in the system. Both chloride ion (Cl-), bicarbonate ion (HCO3-), and nitrate ion (NO3-) can promote the reaction system. As the concentration of NaClO in the reaction solution increased, the generation of chlorates will decrease. The UVA365/ClO2/NaClO process can effectively control the formation of volatile disinfection by-products (DBPs), and with the increase of ClO2 dosage, the formation of DBPs can also decrease.
Collapse
Affiliation(s)
- Chenyan Hu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yihui Wu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhengyu Dong
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Ziyi Dong
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Shengjie Ji
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lili Hu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xinyu Yang
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Hao Liu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
2
|
Xie M, Zhang C, Zheng H, Zhang G, Zhang S. Peroxyl radicals from diketones enhanced the indirect photochemical transformation of carbamazepine: Kinetics, mechanisms, and products. WATER RESEARCH 2022; 217:118424. [PMID: 35429883 DOI: 10.1016/j.watres.2022.118424] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/19/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
In surface waters, photogenerated transients (e.g., hydroxyl radicals, carbonate radicals, singlet oxygen and the triplet states of dissolved organic matter) are known to play a role in the transformation of biorecalcitrant carbamazepine (CBZ). Small diketones, such as acetylacetone (AcAc) and butanedione (BD), are naturally abundant and have been proven to be effective precursors of carbon and oxygen centered radicals. However, the photochemical kinetics and mechanisms of coexisting diketones and CBZ are barely known. Herein, the effects of AcAc and BD on the photochemical conversion of CBZ were investigated compared with H2O2 which was the main ·OH precursor in the environment. An enhancing effect was observed for the degradation of CBZ by the addition of diketones. The enhancing effect of diketones was pH-dependent and much more significant than H2O2 under simulated solar irradiation. On the basis of the identification of transient species and the competition kinetic model, organic peroxyl radicals were found to play a dominant role in CBZ photodegradation, and the second-order rate constants of the reaction between CBZ and peroxyl radicals were determined to be approximately 107-108 M-1s-1. Furthermore, mutagenic acridine was found to be the major cumulative intermediate with a yield of > 30% in the presence of diketones, which might be an environmental concern. This work indicates that the coexistence of diketones and persistent organic pollutants might lead to some detrimental effects on aquatic environments if the water is exposed to sunlight.
Collapse
Affiliation(s)
- Min Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chengyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongcen Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guoyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Photodegradation processes of oxcarbazepine under solar simulated radiation: Analysis of transformation products. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Zou R, Tang K, Angelidaki I, Andersen HR, Zhang Y. An innovative microbial electrochemical ultraviolet photolysis cell (MEUC) for efficient degradation of carbamazepine. WATER RESEARCH 2020; 187:116451. [PMID: 33007673 DOI: 10.1016/j.watres.2020.116451] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Discharge of recalcitrant pharmaceuticals into aquatic environments can lead to serious negative environmental effects. While traditional wastewater treatment plants (WWTPs) are efficient for a wide range of non-toxic pollutants (i.e. ammonia), some wastewater streams contain recalcitrant toxic trace micropollutants such as pharmaceuticals that cannot be removed by the treatment processes that are typically employed in common WWTPs. Herein, an innovative 20 L microbial electrochemical ultraviolet photolysis cell (MEUC) was developed for the first time by the integration of a UV irradiation and a bioelectrochemical system, which exhibited efficient treatment of carbamazepine-a model pharmaceutical compound. Notably, neither the UV irradiation nor the bioelectrochemical system alone could effectively eliminate carbamazepine. The effect of operational parameters including applied voltage, cathodic aeration rate, UV intensity, and hydraulic retention time were evaluated. The obtained results elucidated that the degradation of carbamazepine was consistent with pseudo-first-order reaction kinetics, and required a lower energy input than traditional advanced oxidation processes. Five main transformation products were identified, and probable transformation pathways were established. Furthermore, the eco-toxicity as tested by Vibrio fischeri showed no significant bioluminescence inhibition by the treated carbamazepine effluent. Finally, the MEUC system was further tested with a real wastewater matrix, which again exhibited effective removal of carbamazepine. This paper provides a proof-of-concept verification of the novel MEUC system, which contributes insight for the subsequent vigorous development of the application of such efficient and cost-effective technologies for the treatment of trace pharmaceuticals wastewater.
Collapse
Affiliation(s)
- Rusen Zou
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|
5
|
Zheng M, Bao Y, Huang Z, Qiu W, Xu G, Wang Z. Radiolysis of carbamazepine by electron beam: Roles of transient reactive species and biotoxicity of final reaction solutions on rotifer Philodina sp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135013. [PMID: 31757543 DOI: 10.1016/j.scitotenv.2019.135013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Electron beam (EB) has proven to be an effective advanced oxidation reduction process (AORP) to degrade the psychiatric drug carbamazepine (CBZ); however, the degradation mechanism and the toxicity of the final reaction solutions to aquatic microorganisms needed further investigation. In this study, CBZ was eventually degraded and even mineralized by EB treatment, where the degradation of CBZ followed the pseudo-first-order kinetics with R2 > 0.98. Acidic conditions, presence of an additional oxidant (2.5 mmol L-1 H2O2), and O2/air-saturated conditions improved the degradation efficiency of CBZ, as well as the radiation chemical yield (G-value defined as the efficiency of the irradiation process). Concentrations of transient reactive species (TRS) caused by EB were quantified under different conditions at doses of 0.956 and 3.17 kGy, and the apparent quantum yield of CBZ degradation was in the order of OH > H > eaq-. However, the contribution of these species to CBZ degradation was in the order of OH > eaq- >H due to the generation of only a small amount of H. Findings regarding the changes of in CBZ degradation intermediates, short-chain fatty acids (SCFAs), and total organic carbon showed that CBZ can gradually be mineralized into CO2/CO32-, H2O, and NH3/NH4+ by the EB process. Additionally, an excellent rotifer survival rate after 5-day culturing in the reaction solutions resulting from 5-kGy treatment indicated that EB can be a safe AORP to mineralize CBZ in solution. These findings provide scientific proof for the EB being an effective AORP for removal of psychiatric drugs from aqueous solutions, laying the foundation for future remediation research.
Collapse
Affiliation(s)
- Ming Zheng
- School of Environmental and Chemical Engineering, Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yangyang Bao
- Pudong New Area Environmental Monitoring Station, No. 51 Lingshan Road, Pudong New Area, Shanghai, China
| | - Zhonglian Huang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wenhui Qiu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China.
| | - Zhongying Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Lu G, Hu J. Effect of alpha-hydroxy acids on transformation products formation and degradation mechanisms of carbamazepine by UV/H 2O 2 process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:70-78. [PMID: 31271991 DOI: 10.1016/j.scitotenv.2019.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/01/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
The role of dissolved organic matters (DOM) in the matrix of water on the degradation of refractory pharmaceutical has aroused broad concerns. However, The effect of alpha-hydroxy acids as vulnerable aliphatic acids in the water on the degradation of Carbamazepine (CBZ) has been lack of research. The decomposition kinetics and transformation products (TPs) of CBZ by UV/H2O2 process were studied in the existence of glycolic acid (GA) and lactic acid (LA) and the degradation pathways were proposed. Both GA and LA had significantly negative effects on the decomposition kinetics and mineralization of CBZ by UV/H2O2 process. The declination of steady-state OH concentration in the presence of GA and LA justified the negative effects. GA was demonstrated to be stronger at scavenging and competing OH with CBZ, compared with LA, with the rate constant of slightly less than the common OH scavenger methanol. One-step dosing mode of H2O2 was better than multi-step dosing mode for CBZ decomposition, especially in the presence of GA and LA. The identification of TP253a, TP253b, TP271a, TP271b, TP226, and TP180 in the absence and presence of GA and LA were performed by HPLC-MS/MS and two main degradation pathways were presented. Except for TP271a and TP271b, GA and LA retarded the abundance peaks of other four TPs, of which the formation kinetics rates and decay kinetics rates were negatively affected. Tailing peaks of all TPs caused by GA and LA inevitably resulted in the toxicity of the treated effluent of UV/H2O2 process even when CBZ was decomposed completely. Therefore, alpha-hydroxy acids play important roles in determining the fate and transformation of refractory pharmaceuticals in AOPs treatment.
Collapse
Affiliation(s)
- Gang Lu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Jiangyong Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
7
|
Aparicio F, Escalada JP, De Gerónimo E, Aparicio VC, García Einschlag FS, Magnacca G, Carlos L, Mártire DO. Carbamazepine Degradation Mediated by Light in the Presence of Humic Substances-Coated Magnetite Nanoparticles. NANOMATERIALS 2019; 9:nano9101379. [PMID: 31561528 PMCID: PMC6836229 DOI: 10.3390/nano9101379] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/19/2019] [Accepted: 09/02/2019] [Indexed: 11/16/2022]
Abstract
The use of iron-based nanomaterials for environmental remediation processes has recently received considerable attention. Here, we employed core-shell magnetite-humic acids nanoparticles as a heterogeneous photosensitizer and iron source in photo-Fenton reaction for the degradation of the psychiatric drug carbamazepine (CBZ). CBZ showed low photodegradation rates in the presence of the magnetic nanoparticles, whereas the addition of hydrogen peroxide at pH = 3 to the system drastically increased the abatement of the contaminant. The measured Fe2+ and Fe3+ profiles point to the generation of Fe3+ at the surface of the nanoparticles, indicating a heterogeneous oxidation of the contaminant mediated by hydroxyl radicals. Products with a higher transformation degree were observed in the photo-Fenton procedure and support the attack of the HO• radical on the CBZ molecule. Promising results encourage the use of the nanoparticles as efficient iron sources with enhanced magnet-sensitive properties, suitable for applications in photo-Fenton treatments for the purification of wastewater.
Collapse
Affiliation(s)
- Francisca Aparicio
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, CONICET. Casilla de Correo 16, Sucursal 4, La Plata 1900, Argentina.
| | - Juan Pablo Escalada
- Unidad Académica Río Gallegos, Universidad Nacional de la Patagonia Austral, Río Gallegos 9400, Argentina.
| | - Eduardo De Gerónimo
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Route 226 Km 73,5, Balcarce 7620, Argentina.
| | - Virginia C Aparicio
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Route 226 Km 73,5, Balcarce 7620, Argentina.
| | - Fernando S García Einschlag
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, CONICET. Casilla de Correo 16, Sucursal 4, La Plata 1900, Argentina.
| | - Giuliana Magnacca
- Dipartimento di Chimica and NIS Inter-departmental Centre, Università di Torino, Via Giuria 7, 10125 Torino, Italy.
| | - Luciano Carlos
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), Neuquén 8300, Argentina.
| | - Daniel O Mártire
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, CONICET. Casilla de Correo 16, Sucursal 4, La Plata 1900, Argentina.
| |
Collapse
|
8
|
Qiu W, Zheng M, Sun J, Tian Y, Fang M, Zheng Y, Zhang T, Zheng C. Photolysis of enrofloxacin, pefloxacin and sulfaquinoxaline in aqueous solution by UV/H 2O 2, UV/Fe(II), and UV/H 2O 2/Fe(II) and the toxicity of the final reaction solutions on zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1457-1468. [PMID: 30360275 DOI: 10.1016/j.scitotenv.2018.09.315] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
In this work, the photolysis of enrofloxacin (ENR), pefloxacin (PEF), and sulfaquinoxaline (SQX) in aqueous solution by UV combined with H2O2 or ferrous ions (Fe(II)), as well as Fenton (Fe(II)/H2O2) processes, was investigated. In addition, the toxicity of the final reaction solution after UV/H2O2/Fe(II) treatment toward zebrafish embryos was determined. The degradation of the test compounds followed pseudo-first-order reaction kinetics. The optimum concentrations of H2O2 for ENR, PEF and SQX removal under UV/H2O2 treatment were 20, 20 and 5 mM, respectively. The optimum concentrations of Fe(II) for ENR, PEF and SQX removal in the UV/Fe(II) system were 0.25, 10, and 1 mM, respectively. For the UV/H2O2/Fe(II) system, pH = 3 is the best initial pH for the degradation of ENR, PEF and SQX with the degradation efficiencies at 100%, 79.1% and 100% after 180 min, respectively. Considering the degradation rate and electrical energy per order of the test compounds, the UV/H2O2/Fe(II) process was better than the UV/H2O2 and UV/Fe(II) processes because of the greater OH generation. Based on major transformation products of ENR, PEF, and SQX detected during UV/H2O2/Fe(II) treatment, the probable degradation pathway of each compound is proposed. The fluorine atom of ENR and PEF was transformed into fluorine ion, and the sulfur atom was transformed into SO2/SO42-. The nitrogen atom was mainly transformed into NH3/NH4+. Formic acid, acetic acid, oxalic acid, and fumaric acid were identified in the irradiated solutions and all the test compounds and their intermediates can be finally mineralized. In addition, after the UV/H2O2/Fe(II) process, the acute toxicity of the final reaction solutions on zebrafish embryos was lower than that of the initial solution without any treatment. In summary, UV/H2O2/Fe(II) is a safe and efficient technology for antibiotic degradation.
Collapse
Affiliation(s)
- Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ming Zheng
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Sun
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiqun Tian
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meijuan Fang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ting Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
9
|
Carbamazepine as a Possible Anthropogenic Marker in Water: Occurrences, Toxicological Effects, Regulations and Removal by Wastewater Treatment Technologies. WATER 2018. [DOI: 10.3390/w10020107] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Trawiński J, Skibiński R. Studies on photodegradation process of psychotropic drugs: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1152-1199. [PMID: 27696160 PMCID: PMC5306312 DOI: 10.1007/s11356-016-7727-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/15/2016] [Indexed: 05/10/2023]
Abstract
Consumption of psychotropic drugs is still increasing, especially in high-income countries. One of the most crucial consequences of this fact is significant release of them to the environment. Considerable amounts of atypical antipsychotics, benzodiazepines, antidepressants, and their metabolites were detected in river, lake, and sea water, as well as in tissues of aquatic organisms. Their ecotoxicity was proved by numerous studies. It should be noticed that interaction between psychotropic pharmaceuticals and radiation may lead to formation of potentially more toxic intermediates. On the other hand, photo-assisted wastewater treatment methods can be used as an efficient way to eliminate them from the environment. Many methods based on photolysis and photocatalysis were proposed and developed recently; nevertheless, the problem is still unsolved. However, according to recent studies, photocatalysis could be considered as the most promising and far more effective than regular photolysis. An overview on photolytic as well as homogenous and heterogeneous photocatalytic degradation methods with the use of various catalysts is presented. The photostability and phototoxicity of pharmaceuticals were also discussed. Various analytical methods were used for the photodegradation research, and this issue was also compared and summarized. Use of high-resolution multistage mass spectrometry (Q-TOF, ion trap, Orbitrap) was suggested. The combined techniques such as LC-MS, GC-MS, and LC-NMR, which enable qualitative and quantitative analyses in one run, proved to be the most valuable in this case. Assembling of MS/MS spectra libraries of drug molecules and their phototransformation products was identified as the future challenge.
Collapse
Affiliation(s)
- Jakub Trawiński
- Department of Medicinal, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland.
| | - Robert Skibiński
- Department of Medicinal, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
| |
Collapse
|