1
|
Guo Y, Zhao S, Tang X, Yi H. Research progress on metal-organic framework compounds (MOFs) in electrocatalysis. J Environ Sci (China) 2024; 141:261-276. [PMID: 38408827 DOI: 10.1016/j.jes.2023.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 02/28/2024]
Abstract
Metal-organic frameworks (MOFs) have favorable characteristics such as large specific surface area, high porosity, structural diversity, and pore surface modification, giving them great potential for development and attractive prospects in the research area of modern materials electrocatalysis. However, unsatisfactory catalytic activity and poor electronic conductivity are the main challenges facing MOFs. This review focuses on MOF-based materials used in electrocatalysis, based on the types of catalytic reactions that have used MOF-based materials in recent years along with their applications, and also looks at some new electrocatalytic materials and their future development prospects.
Collapse
Affiliation(s)
- Yutong Guo
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shunzheng Zhao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Xiaolong Tang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Honghong Yi
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| |
Collapse
|
2
|
Wang Y, Xue Y, Züttel A. Nanoscale engineering of solid-state materials for boosting hydrogen storage. Chem Soc Rev 2024; 53:972-1003. [PMID: 38111973 DOI: 10.1039/d3cs00706e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The development of novel materials capable of securely storing hydrogen at high volumetric and gravimetric densities is a requirement for the wide-scale usage of hydrogen as an energy carrier. In recent years, great efforts via nanoscale tuning and designing strategies on both physisorbents and chemisorbents have been devoted to improvements in their thermodynamic and kinetic aspects. Increasing the hydrogen storage capacity/density for physisorbents and chemisorbents and improving the dehydrogenation kinetics of hydrides are still considered a challenge. The extensive and fast development of advanced nanotechnologies has fueled a surge in research that presents huge potential in designing solid-state materials to meet the ultimate U.S. Department of Energy capacity targets for onboard light-duty vehicles, material-handling equipments, and portable power applications. Different from the existing literature, in this review, particular attention is paid to the recent advances in nanoscale engineering of solid-state materials for boosting hydrogen storage, especially the nanoscale tuning and designing strategies. We first present a short overview of hydrogen storage mechanisms of nanoscale engineering for boosted hydrogen storage performance on solid-state materials, for example, hydrogen spillover, nanopump effect, nanosize effect, nanocatalysis, and other non-classical hydrogen storage mechanisms. Then, the focus is on recent advancements in nanoscale engineering strategies aimed at enhancing the gravimetric hydrogen storage capacity of porous materials, reducing dehydrogenation temperature and improving reaction kinetics and reversibility of hydrogen desorption/absorption for metal hydrides. Effective nanoscale tuning strategies for enhancing the hydrogen storage performance of porous materials include optimizing surface area and pore volume, fine-tuning nanopore sizes, introducing nanostructure doping, and crafting nanoarchitecture and nanohybrid materials. For metal hydrides, successful strategies involve nanoconfinement, nanosizing, and the incorporation of nanocatalysts. This review further addresses the points to future research directions in the hope of ushering in the practical applications of hydrogen storage materials.
Collapse
Affiliation(s)
- Yunting Wang
- Institute of Chemical Sciences and Engineering, École polytechnique fédérale de Lausanne (EPFL), CH-1950 Sion, Switzerland.
- Empa Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Yudong Xue
- Institute of Chemical Sciences and Engineering, École polytechnique fédérale de Lausanne (EPFL), CH-1950 Sion, Switzerland.
| | - Andreas Züttel
- Institute of Chemical Sciences and Engineering, École polytechnique fédérale de Lausanne (EPFL), CH-1950 Sion, Switzerland.
- Empa Materials Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
3
|
De Villenoisy T, Zheng X, Wong V, Mofarah SS, Arandiyan H, Yamauchi Y, Koshy P, Sorrell CC. Principles of Design and Synthesis of Metal Derivatives from MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210166. [PMID: 36625270 DOI: 10.1002/adma.202210166] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Indexed: 06/16/2023]
Abstract
Materials derived from metal-organic frameworks (MOFs) have demonstrated exceptional structural variety and complexity and can be synthesized using low-cost scalable methods. Although the inherent instability and low electrical conductivity of MOFs are largely responsible for their low uptake for catalysis and energy storage, a superior alternative is MOF-derived metal-based derivatives (MDs) as these can retain the complex nanostructures of MOFs while exhibiting stability and electrical conductivities of several orders of magnitude higher. The present work comprehensively reviews MDs in terms of synthesis and their nanostructural design, including oxides, sulfides, phosphides, nitrides, carbides, transition metals, and other minor species. The focal point of the approach is the identification and rationalization of the design parameters that lead to the generation of optimal compositions, structures, nanostructures, and resultant performance parameters. The aim of this approach is to provide an inclusive platform for the strategies to design and process these materials for specific applications. This work is complemented by detailed figures that both summarize the design and processing approaches that have been reported and indicate potential trajectories for development. The work is also supported by comprehensive and up-to-date tabular coverage of the reported studies.
Collapse
Affiliation(s)
| | - Xiaoran Zheng
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Vienna Wong
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC, 3000, Australia
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
4
|
Lamiel C, Hussain I, Rabiee H, Ogunsakin OR, Zhang K. Metal-organic framework-derived transition metal chalcogenides (S, Se, and Te): Challenges, recent progress, and future directions in electrochemical energy storage and conversion systems. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Opportunities from Metal Organic Frameworks to Develop Porous Carbons Catalysts Involved in Fine Chemical Synthesis. Catalysts 2023. [DOI: 10.3390/catal13030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
In the last decade, MOFs have been proposed as precursors of functional porous carbons with enhanced catalytic performances by comparison with other traditional carbonaceous catalysts. This area is rapidly growing mainly because of the great structural diversity of MOFs offering almost infinite possibilities. MOFs can be considered as ideal platforms to prepare porous carbons with highly dispersed metallic species or even single-metal atoms under strictly controlled thermal conditions. This review briefly summarizes synthetic strategies to prepare MOFs and MOF-derived porous carbons. The main focus relies on the application of the MOF-derived porous carbons to fine chemical synthesis. Among the most explored reactions, the oxidation and reduction reactions are highlighted, although some examples of coupling and multicomponent reactions are also presented. However, the application of this type of catalyst in the green synthesis of biologically active heterocyclic compounds through cascade reactions is still a challenge.
Collapse
|
6
|
Peña-Velasco G, Hinojosa-Reyes L, Hernández-Ramírez A, Sandoval-Rangel L, Guzmán-Mar JL. Enhanced Removal of Low Concentrations of Anti-inflammatory Drugs in Water Using Fe-MOF Derived Carbon Treated by Acidic Leaching: Characterization and Performance. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Highly Dispersed Cobalt Centers on UiO-66-NH2 for Photocatalytic CO2 Reduction. Catal Letters 2022. [DOI: 10.1007/s10562-022-04081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Li R, Han X, Liu Q, Qian A, Zhu F, Hu J, Fan J, Shen H, Liu J, Pu X, Xu H, Mu B. Enhancing Hydrogen Adsorption Capacity of Metal Organic Frameworks M( BDC)TED 0.5 through Constructing a Bimetallic Structure. ACS OMEGA 2022; 7:20081-20091. [PMID: 35721999 PMCID: PMC9201887 DOI: 10.1021/acsomega.2c01914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Metal organic frameworks (MOFs) have promising application prospects in the field of hydrogen storage. However, the successful application of MOFs in the field is still limited by their hydrogen storage capacity. Herein, a series of M x M1-x (BDC)TED0.5 (M = Zn, Cu, Co, or Ni) with a bimetallic structure was constructed by introducing two metal ions in the synthesis process. The results of X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma showed that the bimetallic structure with different content ratios can be stably constructed by a hydrothermal method. Among them, the Cu-based bimetal MOFs Cu0.625Ni0.375(BDC)TED0.5 exhibited the best hydrogen storage capacity of 2.04 wt% at 77 K and 1 bar, which was 22% higher than that of monometallic Ni(BDC)TED0.5. The enhanced hydrogen storage capacity can be attributed to the improved specific surface area and micropore volume of bimetal MOFs by introducing an appropriate amount of bimetallic atoms.
Collapse
Affiliation(s)
- Renjie Li
- State
Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Han
- State
Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qiaona Liu
- State
Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - An Qian
- State
Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Feifei Zhu
- State
Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiawen Hu
- State
Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jun Fan
- State
Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haitao Shen
- State
Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jichang Liu
- State
Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key
Laboratory for Green Processing of Chemical Engineering of Xinjiang
Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Xin Pu
- State
Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haitao Xu
- State
Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bin Mu
- School
for Engineering of Matter, Transport, and Energy, Arizona State University, 501 East Tyler Mall, Tempe, Arizona 85287, United
States
| |
Collapse
|
9
|
Bankole OE, Verma DK, Chávez González ML, Ceferino JG, Sandoval-Cortés J, Aguilar CN. Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Ma J, Wang X, Chu Z, Zhang J, Du P, Zhang Q, Cao F, Liu J. Electrocatalytic Oxidation of Methanol over An Electrode with Ni‐MOF‐74 Catalyst. ChemCatChem 2021. [DOI: 10.1002/cctc.202101131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jieyu Ma
- School of Chemistry and Life Sciences Suzhou University of Science and Technology 1 Kerui Road Suzhou Jiangsu 215009 P. R. China
| | - Xueyang Wang
- School of Chemistry and Life Sciences Suzhou University of Science and Technology 1 Kerui Road Suzhou Jiangsu 215009 P. R. China
| | - Zhengkun Chu
- School of Chemistry and Life Sciences Suzhou University of Science and Technology 1 Kerui Road Suzhou Jiangsu 215009 P. R. China
| | - Jing Zhang
- School of Chemistry and Life Sciences Suzhou University of Science and Technology 1 Kerui Road Suzhou Jiangsu 215009 P. R. China
| | - Peng Du
- School of Chemistry and Life Sciences Suzhou University of Science and Technology 1 Kerui Road Suzhou Jiangsu 215009 P. R. China
| | - Qianli Zhang
- School of Chemistry and Life Sciences Suzhou University of Science and Technology 1 Kerui Road Suzhou Jiangsu 215009 P. R. China
| | - Feng Cao
- School of Chemistry and Life Sciences Suzhou University of Science and Technology 1 Kerui Road Suzhou Jiangsu 215009 P. R. China
| | - Jie Liu
- School of Chemistry and Life Sciences Suzhou University of Science and Technology 1 Kerui Road Suzhou Jiangsu 215009 P. R. China
| |
Collapse
|
11
|
Freund R, Zaremba O, Arnauts G, Ameloot R, Skorupskii G, Dincă M, Bavykina A, Gascon J, Ejsmont A, Goscianska J, Kalmutzki M, Lächelt U, Ploetz E, Diercks CS, Wuttke S. Der derzeitige Stand von MOF‐ und COF‐Anwendungen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ralph Freund
- Institut für Physik Universität Augsburg Deutschland
| | - Orysia Zaremba
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park Leioa 48940 Spanien
- Department of Chemistry University of California-Berkeley USA
| | - Giel Arnauts
- Center for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven Belgien
| | - Rob Ameloot
- Center for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven Belgien
| | | | - Mircea Dincă
- Department of Chemistry Massachusetts Institute of Technology Cambridge USA
| | - Anastasiya Bavykina
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabien
| | - Jorge Gascon
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabien
| | | | | | | | - Ulrich Lächelt
- Department für Pharmazie und Center for NanoScience (CeNS) LMU München Deutschland
| | - Evelyn Ploetz
- Department Chemie und Center for NanoScience (CeNS) LMU München Deutschland
| | - Christian S. Diercks
- Materials Sciences Division Lawrence Berkeley National Laboratory Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park Leioa 48940 Spanien
- IKERBASQUE, Basque Foundation for Science Bilbao Spanien
| |
Collapse
|
12
|
Synthesis and catalytic activity of a novel ionic liquid-functionalized metal–organic framework. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04565-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Zhang Z, Tsai C, Li B, Lin C, Lee S. Impact of hydrofluoric acid treatment on the composition, electrical conductivity, and structure of carbonized metal–organic frameworks. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhao‐Quan Zhang
- Department of Chemistry Chung Yuan Christian University Taoyuan Taiwan
| | - Chang‐Chih Tsai
- Department of Chemistry Chung Yuan Christian University Taoyuan Taiwan
| | - Bing‐Han Li
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
| | - Chia‐Her Lin
- Department of Chemistry National Taiwan Normal University Taipei Taiwan
| | - Szetsen Lee
- Department of Chemistry Chung Yuan Christian University Taoyuan Taiwan
| |
Collapse
|
14
|
Freund R, Zaremba O, Arnauts G, Ameloot R, Skorupskii G, Dincă M, Bavykina A, Gascon J, Ejsmont A, Goscianska J, Kalmutzki M, Lächelt U, Ploetz E, Diercks CS, Wuttke S. The Current Status of MOF and COF Applications. Angew Chem Int Ed Engl 2021; 60:23975-24001. [DOI: 10.1002/anie.202106259] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ralph Freund
- Solid State Chemistry University of Augsburg Germany
| | - Orysia Zaremba
- BCMaterials, Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
- Department of Chemistry University of California-Berkeley USA
| | - Giel Arnauts
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS) KU Leuven Belgium
| | - Rob Ameloot
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS) KU Leuven Belgium
| | | | - Mircea Dincă
- Department of Chemistry Massachusetts Institute of Technology Cambridge USA
| | - Anastasiya Bavykina
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabia
| | - Jorge Gascon
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabia
| | | | | | | | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNS) LMU Munich Germany
| | - Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS) LMU Munich Germany
| | - Christian S. Diercks
- Materials Sciences Division Lawrence Berkeley National Laboratory Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| |
Collapse
|
15
|
Theoretical DFT study on metal–organic frameworks for hydrogen storage. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04348-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Alhaddad M, Sheta SM. Dual Naked-Eye and Optical Chemosensor for Morphine Detection in Biological Real Samples Based on Cr(III) Metal-Organic Framework Nanoparticles. ACS OMEGA 2020; 5:28296-28304. [PMID: 33163813 PMCID: PMC7643277 DOI: 10.1021/acsomega.0c04249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 05/12/2023]
Abstract
The analytical detection and quantification of abuse drugs such as morphine (MOR) in biological samples are vital missions and remains to attract challenges for forensic toxicology, law enforcement, world antidoping organization, and social health fields. MOR, a benchmark analgesic drug known as "pain killer", is one of the powerful opioid medications for relieving pain, and overdose of MOR is toxic. In this article, novel promising chromium metal-organic framework nanoparticles [Cr(III)-MOF-NPs] were produced via facile synthesis and characterized using high-resolution transmission electron microscopy, field-emission scanning electron microscopy/energy-dispersive X-ray spectroscopy, mass spectrometry, X-ray photoelectron spectroscopy, elemental analysis, UV-vis, Fourier transform infrared, and thermogravimetry/differential scanning calorimetry, as well as photoluminescence (PL) investigation and magnetic properties. The PL study results revealed that the Cr(III)-MOF-NPs exhibited an emission band at 593 nm. The Cr(III)-MOF-NPs could be used in fast, selective, and sensitive MOR detection and quantification. Under the optimum experimental conditions, with the addition of MOR, a blueshift from 593 to 566 nm occurred with a remarkable PL intensity enhancement, and the color changed from brown to yellow (visually/naked-eye detection). The Cr(III)-MOF-NPs optical chemosensor exhibited a stable response for MOR in a concentration range between 0.1 and 350 nM. The detection and quantification limits were 0.167 and 0.443 nM, respectively, with a correlation coefficient (r 2) of 0.96. The developed PL chemosensor showed high selectivity for MOR over other competing interfering matrices. Moreover, the ultrasensitive chemosensor was extensively used for the determination of MOR spiked in different real samples (serum and urine samples) with acceptable recoveries and satisfactory results.
Collapse
Affiliation(s)
- Maha Alhaddad
- Department
of Chemistry, Faculty of Science, King Abdulaziz
University, P.O. Box 80203, Jeddah 21589, Kingdom of Saudi Arabia
| | - Sheta M. Sheta
- Department
of Inorganic Chemistry, National Research
Centre, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt
| |
Collapse
|
17
|
Characterization of Carbon Materials for Hydrogen Storage and Compression. C — JOURNAL OF CARBON RESEARCH 2020. [DOI: 10.3390/c6030046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Carbon materials have proven to be a suitable choice for hydrogen storage and, recently, for hydrogen compression. Their developed textural properties, such as large surface area and high microporosity, are essential features for hydrogen adsorption. In this work, we first review recent advances in the physisorption characterization of nanoporous carbon materials. Among them, approaches based on the density functional theory are considered now standard methods for obtaining a reliable assessment of the pore size distribution (PSD) over the whole range from narrow micropores to mesopores. Both a high surface area and ultramicropores (pore width < 0.7 nm) are needed to achieve significant hydrogen adsorption at pressures below 1 MPa and 77 K. However, due to the wide PSD typical of activated carbons, it follows from an extensive literature review that pressures above 3 MP are needed to reach maximum excess uptakes in the range of ca. 7 wt.%. Finally, we present the adsorption–desorption compression technology, allowing hydrogen to be compressed at 70 MPa by cooling/heating cycles between 77 and 298 K, and being an alternative to mechanical compressors. The cyclic, thermally driven hydrogen compression might open a new scenario within the vast field of hydrogen applications.
Collapse
|
18
|
Nemati Chelavi A, Zare-Shahabadi V, Sayyahi S, Anaraki-Ardakani H. Optimization of the transfer hydrogenation reaction of acetophenone on Ni@MOF-5 nanoparticles using response surface methodology. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03959-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
An electrochemical ratiometric sensor based on 2D MOF nanosheet/Au/polyxanthurenic acid composite for detection of dopamine. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.040] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|