1
|
Roussel S, Udabe J, Bin Sabri A, Calderón M, Donnelly R. Leveraging novel innovative thermoresponsive polymers in microneedles for targeted intradermal deposition. Int J Pharm 2024; 652:123847. [PMID: 38266945 DOI: 10.1016/j.ijpharm.2024.123847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Microneedles have garnered considerable attention over the years as a versatile pharmaceutical platform that could be leveraged to deliver drugs into and across the skin. In the current work, poly (N-isopropylacrylamide) (PNIPAm) is synthesized and characterized as a novel material for the development of a physiologically responsive microneedle-based drug delivery system. Typically, this polymer transitions reversibly between a swell state at lower temperatures and a more hydrophobic state at higher temperatures, enabling precise drug release. This study demonstrates that dissolving microneedles patches made from PNIPAm, incorporating BIS-PNIPAm, a crosslinked polymer variant, exhibit enhanced mechanical properties, evident from a smaller height reduction in microneedle (∼10 %). Although microneedles using PNIPAm alone were achievable, it displayed poor mechanical strength, requiring the inclusion of additional polymeric excipients like PVA to enhance mechanical properties. In addition, the incorporation of a thermoresponsive polymer did not have a significant (p > 0.05) impact on the insertion properties of the needles as all formulations inserted to a similar depth of 500 µm into ex vivo skin. Furthering this, the needles were loaded with a model payload, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate (DID) and the deposition of the cargo was monitored via multiphoton microscopy that showed that a deposit is formed at a depth of ≈200 µm. Also, it was revealed that crosslinked-PNIPAm (Bis-PNIPAm) formulations exhibited notable skin accumulationof the dye only after 4 h, independent of the excipient matrix used. This phenomenon was absent in non-crosslinked PNIPAm formulations, indicating a deposit formation in Bis-PNIPAm microneedle formulation. Collectively, this proof-of-concept study has advanced our understanding on the possibility to use PNIPAm for dissolving microneedle fabrication which could be harnessed for the deposition of nanoparticles into the dermis, for extended drug release within the skin.
Collapse
Affiliation(s)
- Sabrina Roussel
- Faculty of Pharmacy, CHU de Quebec Research Center, Université Laval, 2705 Laurier Blvd, Quebec G1V 4G2, Canada; School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jakes Udabe
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia - San Sebastián, Spain
| | - Akmal Bin Sabri
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, The University of Nottingham, NG7 2RD, UK
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia - San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ryan Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
2
|
Hu C, van Bonn P, Demco DE, Bolm C, Pich A. Mechanochemical Synthesis of Stimuli Responsive Microgels. Angew Chem Int Ed Engl 2023; 62:e202305783. [PMID: 37177824 DOI: 10.1002/anie.202305783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/15/2023]
Abstract
Mechanochemical approaches are widely used for the efficient, solvent-free synthesis of organic molecules, however their applicability to the synthesis of functional polymers has remained underexplored. Herein, we demonstrate for the first time that mechanochemically triggered free-radical polymerization allows solvent- and initiator-free syntheses of structurally and morphologically well-defined complex functional macromolecular architectures, namely stimuliresponsive microgels. The developed mechanochemical polymerization approach is applicable to a variety of monomers and allows synthesizing microgels with tunable chemical structure, variable size, controlled number of crosslinks and reactive functional end-groups.
Collapse
Affiliation(s)
- Chaolei Hu
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Pit van Bonn
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Dan E Demco
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD, Geleen, The Netherlands
| |
Collapse
|
3
|
Synthesis of N-vinylcaprolactam and methacrylic acid based hydrogels and investigation of drug release characteristics. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Nizardo NM, Alimin DF, Lestari MLAD. Synthesis and characterization of dual-responsive poly(N-vinylcaprolactam-co-N-methylolacrylamide) nanogels. Des Monomers Polym 2022; 25:155-164. [PMID: 35711620 PMCID: PMC9196741 DOI: 10.1080/15685551.2022.2086412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This article reports the synthesis of poly(N-vinylcaprolactam-co-N-methylolacrylamide) (P(NVCL-co-NMA)) nanogels and investigates their thermo-/pH-responsive behavior. The formation of nanogels was synthesized using free radical emulsion polymerization by varying the monomer composition of NVCL:NMA, and their molecular structure was characterized by 1H-NMR and FTIR. It was found that the nanogels were successfully prepared, and the nanogels exhibited LCST-type phase transition behavior. Cloud point transition temperature (Tc) was studied as a function of copolymer composition, MBA concentration, and pH of the solution by exploring their changes in turbidity using UV-vis spectrophotometer. Our studies reveal that Tc nanogels increased with increasing concentration of NMA, which is due to the hydrophilicity of NMA. Our research also demonstrated that the increase in MBA percentage could decrease the Tc of the synthesized nanogels. Interestingly, P(NVCL-co-NMA) nanogels showed not only a thermoresponsive behavior but also a pH response with increasing Tc in a strong acidic environment owing to the H-bonds within the polymer chains. The results show that nanogels with initial monomer composition of NVCL and NMA of 75% and 25%, respectively, and using 4% of MBA showed Tc around 35°C at pH 7.4. In addition, DLS studies also confirmed this result since the particle sizes became much larger after surpassing the temperature of 35°C. Due to this founding, such nanogels might have potential application in controlled release. Nevertheless, further studies regarding the adjustment of Tc are still needed.
Collapse
Affiliation(s)
- Noverra M Nizardo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
| | - Dzul Fadli Alimin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
| | - Maria L A D Lestari
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
5
|
Feng J, Zheng L, Wu X, Wu J, Yu Y, Li L, Li M. Preparation and characterization of polymer retarder for plugging cement slurry. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2066001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jie Feng
- China University of Petroleum, Beijing, Beijing, China
- China National Petroleum Corporation Engineering Technology Research Institute Co., Ltd, Beijing, China
| | - Lihui Zheng
- China University of Petroleum, Beijing, Beijing, China
| | - Xiaoying Wu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan, China
| | - Jing Wu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan, China
| | - Yongjin Yu
- China National Petroleum Corporation Engineering Technology Research Institute Co., Ltd, Beijing, China
| | - Long Li
- China National Petroleum Corporation Engineering Technology Research Institute Co., Ltd, Beijing, China
| | - Ming Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Fallon M, Halligan S, Pezzoli R, Geever L, Higginbotham C. Synthesis and Characterisation of Novel Temperature and pH Sensitive Physically Cross-Linked Poly (N-vinylcaprolactam-co-itaconic Acid) Hydrogels for Drug Delivery. Gels 2019; 5:E41. [PMID: 31470691 PMCID: PMC6787750 DOI: 10.3390/gels5030041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
Previous studies involving poly N-vinylcaprolactam (PNVCL) and itaconic acid (IA) have synthesised the hydrogels with the presence of a solvent and a crosslinker, producing chemically crosslinked hydrogel systems. In this study, however, temperature sensitive PNVCL was physically crosslinked with a pH-sensitive comonomer IA through ultraviolet (UV) free-radical polymerization, without the presence of a solvent, to produce hydrogels with dual sensitivity. The attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy indicated successful polymerisation of the hydrogels. The temperature and pH sensitivity of the hydrogels was investigated. The lower critical solution temperature (LCST) of the gels was determined using the UV spectrometry and it was found that the incorporation of IA decreased the LCST. Rheology was conducted to investigate the mechanical and viscoelastic properties of the hydrogels, with results indicating IA that enhances the mechanical properties of the gels. Swelling studies were carried out at ~20 °C and 37 °C in different buffer solutions simulating the gastrointestinal tract (pH 2.2 and pH 6.8). In acidic conditions, the gels showed gradual increase in swelling while remaining structurally intact. While in basic conditions, the gels had a burst in swelling and began to gradually degrade after 30 min. Results were similar for drug release studies. Acetaminophen was incorporated into the hydrogels. Drug dissolution studies were carried out at 37 °C in pH 2.2 and pH 6.8. It was found that <20% of acetaminophen was released from the gels in pH 2.2, whereas the maximum drug released at pH 6.8 was 74%. Cytotoxicity studies also demonstrated the hydrogels to be highly biocompatible. These results indicate that physically crosslinked P(NVCL-IA) gels possess dual pH and temperature sensitive properties, which may be beneficial for biomedical applications such as drug delivery.
Collapse
Affiliation(s)
- Megan Fallon
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath N37 F6D7, Ireland
| | - Shane Halligan
- Applied Polymer Technologies Gateway, Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath N37 HD68, Ireland
| | - Romina Pezzoli
- Applied Polymer Technologies Gateway, Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath N37 HD68, Ireland
| | - Luke Geever
- Applied Polymer Technologies Gateway, Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath N37 HD68, Ireland
| | - Clement Higginbotham
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath N37 F6D7, Ireland.
- Applied Polymer Technologies Gateway, Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath N37 HD68, Ireland.
| |
Collapse
|
7
|
Sono-chemical synthesis and characterization of Fe3O4@mTiO2-GO nanocarriers for dual-targeted colon drug delivery. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3204-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Lohaus T, de Wit P, Kather M, Menne D, Benes N, Pich A, Wessling M. Tunable permeability and selectivity: Heatable inorganic porous hollow fiber membrane with a thermo-responsive microgel coating. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.05.052] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|