1
|
Badawi WA, Samir M, Fathy HM, Okda TM, Noureldin MH, Atwa GMK, AboulWafa OM. Design, synthesis and molecular docking study of new pyrimidine-based hydrazones with selective anti-proliferative activity against MCF-7 and MDA-MB-231 human breast cancer cell lines. Bioorg Chem 2023; 138:106610. [PMID: 37210828 DOI: 10.1016/j.bioorg.2023.106610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
Efforts were directed on the design, synthesis and evaluation of the anticancer activity of some pyrimidine-based hydrazones against two breast cancer cell lines, MCF-7 and MDA-MB-231. Preliminary screening results revealed that some candidates scrutinized for their antiproliferative activities exhibited IC50 values of 0.87 μM-12.91 μM in MCF-7 and 1.75 μM-9.46 μM in MDA-MB-231 cells, indicating almost equal activities on both cell lines and better growth inhibition activities than those of the positive control 5-fluorouracil (5-FU) which displayed IC50 values of 17.02 μM and 11.73 μM respectively. Selectivity of the significantly active compounds was estimated against MCF-10A normal breast cells when compounds 7c, 8b, 9a and 10b exhibited superior activity for cancerous cells than for normal cells when compound 10b presented the best selectivity Index (SI) with respect to both MCF-7 and MDA-MB-231 cancer cells in comparison to the reference drug 5-FU. Mechanisms of their actions were explored by inspecting activation of caspase-9, annexin V staining and cell cycle analysis. It was noticed that compounds 7c, 8b, 8c 9a-c and 10b produced an increase in caspase-9 levels in MCF-7 treated cells with 10b inducing the highest elevation (27.13 ± 0.54 ng/mL) attaining 8.26-fold when compared to control MCF-7 which was higher than that of staurosporine (19.011 ± 0.40 ng/mL). The same compounds boosted caspase-9 levels in MDA-MB-231 treated cells when an increase in caspase-9 concentration reaching 20.40 ± 0.46 ng/mL (4.11-fold increase) was observed for compound 9a. We also investigated the role of these compounds for their increasing apoptosis ability against the 2 cell lines. Compounds 7c, 8b and 10b tested on MCF-7 cells displayed pre-G1 apoptosis and arrested cell cycle in particular at the S and G1 phases. Further clarification of their effects was made by modulating their related activities as inhibitors of ARO and EGFR enzymes when 8c and 9b showed 52.4% and 58.9% inhibition activity relative to letrozole respectively and 9b and 10b showed 36% and 39% inhibition activity of erlotinib. Also, the inhibition activity was verified by docking into the chosen enzymes.
Collapse
Affiliation(s)
- Waleed A Badawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Damanhour, 22511, Egypt.
| | - Mohamed Samir
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch 71524, Assiut, Egypt
| | - Hazem M Fathy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch 71524, Assiut, Egypt
| | - Tarek M Okda
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
| | - Mohamed H Noureldin
- Department of Biochemistry, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria P. O. Box 1029, Egypt
| | - Gamal M K Atwa
- Department of Biochemistry, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt
| | - Omaima M AboulWafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21215, Egypt
| |
Collapse
|
2
|
Sahin Z, Biltekin SN, Yurttas L, Berk B, Özhan Y, Sipahi H, Gao ZG, Jacobson KA, Demirayak Ş. Novel cyanothiouracil and cyanothiocytosine derivatives as concentration-dependent selective inhibitors of U87MG glioblastomas: Adenosine receptor binding and potent PDE4 inhibition. Eur J Med Chem 2020; 212:113125. [PMID: 33422981 DOI: 10.1016/j.ejmech.2020.113125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/07/2020] [Accepted: 12/20/2020] [Indexed: 12/11/2022]
Abstract
Thiouracil and thiocytosine are important heterocyclic pharmacophores having pharmacological diversity. Antitumor and antiviral activity is commonly associated with thiouracil and thiocytosine derivatives, which are well known fragments for adenosine receptor affinity with many associated pharmacological properties. In this respect, 33 novel compounds have been synthesized in two groups: 24 thiouracil derivatives (4a-x) and 9 thiocytosine derivatives (5a-i). Antitumor activity of all the compounds was determined in the U87 MG glioblastoma cell line. Compound 5e showed an anti-proliferative IC50 of 1.56 μM, which is slightly higher activity than cisplatin (1.67 μM). The 11 most active compounds showed no signficant binding to adenosine A1, A2A or A2B receptors at 1 μM. Brain tumors express high amounts of phosphodiesterases. Compounds were tested for PDE4 inhibition, and 5e and 5f showed the best potency (5e: 3.42 μM; 5f: 0.97 μM). Remakably, those compounds were also the most active against U87MG. However, the compounds lacked a cytotoxic effect on the HEK293 healthy cell line, which encourages further investigation.
Collapse
Affiliation(s)
- Zafer Sahin
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul, Turkey.
| | - Sevde Nur Biltekin
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul, Turkey
| | - Leyla Yurttas
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Eskisehir, Turkey
| | - Barkin Berk
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul, Turkey
| | - Yağmur Özhan
- Yeditepe University, Faculty of Pharmacy, Department of Toxicology, Istanbul, Turkey
| | - Hande Sipahi
- Yeditepe University, Faculty of Pharmacy, Department of Toxicology, Istanbul, Turkey
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Şeref Demirayak
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul, Turkey
| |
Collapse
|
3
|
Ragab FA, Nissan YM, Seif EM, Maher A, Arafa RK. Synthesis and in vitro investigation of novel cytotoxic pyrimidine and pyrazolopyrimidne derivatives showing apoptotic effect. Bioorg Chem 2020; 96:103621. [DOI: 10.1016/j.bioorg.2020.103621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/01/2020] [Accepted: 01/22/2020] [Indexed: 12/17/2022]
|
4
|
Synthesis and biological evaluation of novel pyrimidine-5-carbonitriles featuring morpholine moiety as antitumor agents. Future Med Chem 2020; 12:403-421. [PMID: 32027179 DOI: 10.4155/fmc-2019-0146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: Design and synthesis of novel morpholinopyrimidine-5-carbonitriles as antitumor agents. Materials & methods: New series of morpholinopyrimidine-5-carbonitriles have been synthesized. 19 derivatives (3b, 4a, 5-6, 9-12, 13a-e, 14a-c and 15-17) were evaluated for their in vitro antitumor activity by the National Cancer Institute (NCI; MD, USA). Moreover, compound 13e was evaluated against PI3K (α, β and δ) and the mechanism of its cytotoxic activity on leukemia SR was studied. Results: Compound 13e possessed remarkable broad spectrum antitumor activity with GI50 (median growth inhibition) and TGI (total growth inhibition) values of 6.15 and 28.66 μM, respectively, caused cell cycle arrest at G2-M phase and significant increase in the percentage of annexin V-FITC - positive apoptotic cells, also increased the level of active caspase-3. Moreover, 13e revealed good safety profile against transformed human liver epithelial-2 (THLE2).
Collapse
|