1
|
Jiang W, Cheng W, Zhang T, Lu T, Wang J, Yan Y, Tang X, Wang X. Synthesis and antifungal activity evaluation of novel pyridine derivatives as potential succinate dehydrogenase inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Esharkawy ER, Almalki F, Hadda TB. In vitro potential antiviral SARS-CoV-19- activity of natural product thymohydroquinone and dithymoquinone from Nigella sativa. Bioorg Chem 2022; 120:105587. [PMID: 35026560 PMCID: PMC8719923 DOI: 10.1016/j.bioorg.2021.105587] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/19/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022]
Abstract
Inflammation, oxidation, and compromised immunity all increase the dangers of COVID-19, whereas many pharmaceutical protocols may lead to increased immunity such as ingesting from sources containing vitamin E and zinc. A global search for natural remedies to fight COVID-19 has emerged, to assist in the treatment of this infamous coronavirus. Nigella satvia is a world-renowned plant, an esteemed herbal remedy, which can be used as a liquid medicine to increase immunity while decreasing the dangers of acute respiratory distress syndrome. Thymoqinone (TQ), dithymoqinone (DTQ) and thymohydroquinone (THQ), are major compounds of the essential oil contained in N.sativa. A current study aims to discover the antiviral activity of two compounds, Thymohydroquinone and Dithymoquinone, which are synthesized through simple chemical procedures, deriving from thymoquinone, which happens to be a major compound of Nigella sativa. A half-maximal cytotoxic concentration, "CC50", was calculated by MTT assay for each individual drug, The sample showed anti-SARS-CoV-2 activity at non-cytotoxic nanomolar concentrations in vitro with a low selectivity index (CC50/IC50 = 31.74/23.15 = 1.4), whereby Dimthymoquinone shows high cytotoxicity.
Collapse
Affiliation(s)
- Eman R Esharkawy
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia.
| | - Faisal Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, MB 524, 60000 Oujda, Morocco
| |
Collapse
|
3
|
Novel thiophene Chalcones-Coumarin as acetylcholinesterase inhibitors: Design, synthesis, biological evaluation, molecular docking, ADMET prediction and molecular dynamics simulation. Bioorg Chem 2021; 119:105572. [PMID: 34971946 DOI: 10.1016/j.bioorg.2021.105572] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/04/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022]
Abstract
A series of around eight novel chalcone based coumarin derivatives (23a-h) was designed, subjected to in-silico ADMET prediction, synthesized, characterized by IR, NMR, Mass analytical techniques and evaluated as acetylcholinesterase (AChE) inhibitor for the treatment of Alzheimer's disease (AD). The results of predicted ADMET study demonstrated the drug-likeness properties of the titled compounds with developmental challenges in lipophilicity and solubility parameters. The in vitro assessment of the synthesized compounds revealed that all of them showed significant activity (IC50 ranging from 0.42 to 1.296 µM) towards AChE compared to the standard drug, galantamine (IC50 = 1.142 ± 0.027 µM). Among these, compound 23e displayed the most potent inhibitory activity with IC50 value of 0.42 ± 0.019 µM. Cytotoxicity of all compounds was tested on normal human hepatic (THLE-2) cell lines at three different concentrations using the MTT assay, in which none of the compound showed significant toxicity at the highest concentration of 1000 µg/ml compared to the control group. Based on the docking study against AChE, the most active derivative 23e was orientated towards the active site and occupied both catalytic anionic site (CAS) and peripheral anionic site (PAS) of the target enzyme. In-silico studies revealed tested showed better inhibition activity of AChE compared to Butyrylcholinesterase (BuChE). Molecular dynamics simulation explored the stability and dynamic behavior of 23e- AChE complex.
Collapse
|
4
|
Design, synthesis, and antifungal activity evaluation of novel 2-cyano-5-oxopentanoic acid derivatives as potential succinate dehydrogenase inhibitors. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02818-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Yang B, Zhou J, Wang F, Hu XW, Shi Y. Pyrazoline derivatives as tubulin polymerization inhibitors with one hit for Vascular Endothelial Growth Factor Receptor 2 inhibition. Bioorg Chem 2021; 114:105134. [PMID: 34246970 DOI: 10.1016/j.bioorg.2021.105134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/06/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023]
Abstract
In this work, to check the effect of the transposition of the rings in typical patterns, a series of pyrazoline derivatives 3a-3t bearing the characteristic 3,4,5-trimethoxy phenyl and thiophene moieties were synthesized and evaluated as tubulin polymerization inhibitors. Basically, as the concise output of our design, a majority of the synthesized compounds showed potency in inhibiting the tubulin polymerization. The top hit, 3q, exhibited potent anti-proliferation activity on cancer cell lines. It was comparable on tubulin-polymerization inhibition with the positive control Colchicine but lower toxic. The VEGFR2 inhibitory potency was introduced occasionally. The flow cytometry assay confirmed the apoptotic procedure and the confocal imaging revealed the tubulin-microtubule dynamics pattern. The anti-cancer mechanism of 3q was similar to Colchicine but not exactly the same on forming multi-polar spindles. The docking simulation visualized the possible binding patterns of 3q into tubulin and VEGFR2, respectively. The results inferred that further investigations on the transposition of the rings might lead to the improvement of tubulin polymerization inhibitory activity and the steadily introduction of the VEGFR2 inhibition.
Collapse
Affiliation(s)
- Bing Yang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Jiahua Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Fa Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiao-Wei Hu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China
| | - Yujun Shi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
6
|
Ben Hadda T, Berredjem M, Almalki FA, Rastija V, Jamalis J, Emran TB, Abu-Izneid T, Esharkawy E, Rodriguez LC, Alqahtani AM. How to face COVID-19: proposed treatments based on remdesivir and hydroxychloroquine in the presence of zinc sulfate. Docking/DFT/POM structural analysis. J Biomol Struct Dyn 2021; 40:9429-9442. [PMID: 34033727 PMCID: PMC8171014 DOI: 10.1080/07391102.2021.1930161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Remdesivir and hydroxychloroquine derivatives form two important classes of heterocyclic compounds. They are known for their anti-malarial biological activity. This research aims to analyze the physicochemical properties of remdesivir and hydroxychloroquine compounds by the computational approach. DFT, docking, and POM analyses also identify antiviral pharmacophore sites of both compounds. The antiviral activity of hydroxychloroquine compound's in the presence of zinc sulfate and azithromycin is evaluated through its capacity to coordinate transition metals (M = Cu, Ni, Zn, Co, Ru, Pt). The obtained bioinformatic results showed the potent antiviral/antibacterial activity of the prepared mixture (Hydroxychloroquine/Azithromycin/Zinc sulfate) for all the opportunistic Gram-positive, Gram-negative in the presence of coronavirus compared with the complexes Polypyridine-Ruthenium-di-aquo. The postulated zinc(II) complex of hydroxychloroquine derivatives are indeed an effective antibacterial and antiviral agent against coronavirus and should be extended to other pathogens. The combination of a pharmacophore site with a redox [Metal(OH2)2] moiety is of crucial role to fight against viruses and bacteria strains. [Formula: see text]Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia,Laboratory of Applied Chemistry & Environment, Faculty of Science, University Mohammed the first, Oujda, Morocco,CONTACT Taibi Ben Hadda Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Almukkarramah 21955, Saudi Arabia; Malika Berredjem Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Box 12, 23000, Annaba, Algeria
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Annaba, Algeria,CONTACT Taibi Ben Hadda Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Almukkarramah 21955, Saudi Arabia; Malika Berredjem Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Box 12, 23000, Annaba, Algeria
| | - Faisal A. Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Vesna Rastija
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh,Drug Discovery, GUSTO A Research Group, Chittagong, Bangladesh
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, UAE
| | - Eman Esharkawy
- Department of Plant Ecology and Range Management, Ecology and Dry Lands Agriculture Division, Desert Research Center, Mathef El-Mataria, Egypt,Department of Chemistry, Science Faculty for Girls, Northern Border University ARAR, North Region, Saudi Arabia
| | - Luis Cruz Rodriguez
- ELIDAN Dynamic LLC, Tampa, FL, USA,ELIDAN Genome SAS, Montereau Fault Yonne, France,Environmental Biotechnology Department, ExCELab Co, Ltd, St Ann, Jamaica
| | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
7
|
Kaddouri Y, Abrigach F, Ouahhoud S, Benabbes R, El Kodadi M, Alsalme A, Al-Zaqri N, Warad I, Touzani R. Synthesis, characterization, reaction mechanism prediction and biological study of mono, bis and tetrakis pyrazole derivatives against Fusarium oxysporum f. sp. Albedinis with conceptual DFT and ligand-protein docking studies. Bioorg Chem 2021; 110:104696. [PMID: 33652343 DOI: 10.1016/j.bioorg.2021.104696] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 12/18/2020] [Accepted: 01/28/2021] [Indexed: 11/20/2022]
Abstract
Twelve heterocyclic compounds were prepared using the condensation of hydroxymethanol pyrazole derivatives with different primary aminesas example 2-aminothiazole and 1-aminobenzotriazole to have a diverse productin good yield up to 97%. Those ligands were tested against Fusarium oxysporum f. sp. Albedinis fungi (BAYOUD Disease) with IC50 = 25.6-33.2 µg/ml. After experiments, theoretical investigations were done as DFT study to know the ligands molecular reactivity and the-ligandprotein- docking study to know the possible binding between the prepared ligands with two biological targets: FGB1 (Fusarium oxysporum Guanine nucleotide-binding protein beta subunitprimary amino acid sequence) and Fophy (Fusarium oxysporum phytase domain enzyme). Of all the obtained results, the experimental ones were well correlated with the theoretical with the most common thing between those compounds is (Nδ--Nδ+) which is the antifungal pharmacophore as proposed pincers for Foa inhibition. From docking studies over FGB1 and Fophy, the ligand 9 has the best binding energy of -6.4872 kcal/mol in FGB1 active site and -5.5282 kcal/mol in Fophy active site, but better correlation with Fophy than FGB1 which is followed by PLIF graph to get that Arg116, Arg120 and Lys336 are the vital amino acids of fophy protein based the study over the chosen active site.
Collapse
Affiliation(s)
- Yassine Kaddouri
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed Premier, Oujda, Morocco.
| | - Farid Abrigach
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Sabir Ouahhoud
- Laboratory of Biochemistry (LB), Department of Biology, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Redouane Benabbes
- Laboratory of Biochemistry (LB), Department of Biology, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Mohamed El Kodadi
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed Premier, Oujda, Morocco; Laboratoire d'Innovation en Sciences, Technologie et Education (LISTE), CRMEF Oriental, Oujda, Morocco
| | - Ali Alsalme
- Department of chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nabil Al-Zaqri
- Department of chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Department of Chemistry, College of Science, Ibb University, P. O. Box 70270, Ibb, Yemen
| | - Ismail Warad
- Department of Chemistry, Science College, An-Najah National University, PB 7, Nablus, Palestine
| | - Rachid Touzani
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| |
Collapse
|
8
|
Farghaly TA, Abbas IM, Hassan WMI, Lotfy MS, Al-Qurashi NT, Hadda TB. Structure Determination and Quantum Chemical Analysis of 1,3-Dipolar Cycloaddition of Nitrile Imines and New Dipolarophiles and POM Analyses of the Products as Potential Breast Cancer Inhibitors. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020070210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Rbaa M, Jabli S, Lakhrissi Y, Ouhssine M, Almalki F, Ben Hadda T, Messgo-Moumene S, Zarrouk A, Lakhrissi B. Synthesis, antibacterial properties and bioinformatics computational analyses of novel 8-hydroxyquinoline derivatives. Heliyon 2019; 5:e02689. [PMID: 31687516 PMCID: PMC6820249 DOI: 10.1016/j.heliyon.2019.e02689] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/11/2019] [Accepted: 10/15/2019] [Indexed: 11/19/2022] Open
Abstract
New heterocyclic derivatives of 8-hydroxyquinoline were prepared and screened as antimicrobial agents. Chemical structures were elucidated and confirmed using different spectroscopic methods such as elemental analysis data, Infrared, Nuclear Magnetic Resonance Spectroscopy. In order to explore their potential biological activity, the “in vitro” antibacterial activity was investigated against [E. coli (ATCC35218), S. aureus (ATCC29213), V. parahaemolyticus (ATCC17802), and P. aeruginosa (ATCC27853)]. The studied compounds exhibited a remarkable antibacterial activity superior to the standard antibiotic (Penicillin G). These new heterocyclic derivatives of 8-hydroxyquinoline, which proved to be potentially effective, can be used as alternative chemical antimicrobial agents applications. It was very interesting to observe that POM (Petra/Osiris/Molinspiration) bioinformatic analyses of the 8-hydroxyquinoline derivative (5) exhibited more important antibacterial activity (MIC = 10−6 mg/mL against V.p and S.a bacteria) and good drug score (DS = 0.71) when compared with Penicillin (DS = 0.33; MIC = 10−3 mg/mL).
Collapse
Affiliation(s)
- Mohamed Rbaa
- Laboratory of Agro-resources, Polymers and Process Engineering, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, PO Box 133, 14000, Kenitra, Morocco
| | - Siham Jabli
- Laboratory of Agro Physiology, Biotechnology, Environment and Quality, Department of Biology, Faculty of Sciences, Ibn Tofail University, PO Box 133, 14000, Kenitra, Morocco
| | - Younes Lakhrissi
- Laboratory of Agro-resources, Polymers and Process Engineering, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, PO Box 133, 14000, Kenitra, Morocco
| | - Mohamed Ouhssine
- Laboratory of Agro Physiology, Biotechnology, Environment and Quality, Department of Biology, Faculty of Sciences, Ibn Tofail University, PO Box 133, 14000, Kenitra, Morocco
| | - Faisal Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
- Corresponding author.
| | - Saida Messgo-Moumene
- Laboratory for Research on Medicinal and Aromatic Plants, Science and Life Faculty, University of Blida 1, PO Box 270, Soumaa Road, 09100, Blida, Algeria
| | - Abbelkader Zarrouk
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University, Ibn Battouta Avenue, PO Box 1014, Agdal, Rabat, Morocco
| | - Brahim Lakhrissi
- Laboratory of Agro-resources, Polymers and Process Engineering, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, PO Box 133, 14000, Kenitra, Morocco
- Corresponding author.
| |
Collapse
|