1
|
Alcalde MA, Perez-Matas E, Escrich A, Cusido RM, Palazon J, Bonfill M. Biotic Elicitors in Adventitious and Hairy Root Cultures: A Review from 2010 to 2022. Molecules 2022; 27:molecules27165253. [PMID: 36014492 PMCID: PMC9416168 DOI: 10.3390/molecules27165253] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
One of the aims of plant in vitro culture is to produce secondary plant metabolites using plant cells and organ cultures, such as cell suspensions, adventitious, and hairy roots (among others). In cases where the biosynthesis of a compound in the plant is restricted to a specific organ, unorganized systems, such as plant cell cultures, are sometimes unsuitable for biosynthesis. Then, its production is based on the establishment of organ cultures such as roots or aerial shoots. To increase the production in these biotechnological systems, elicitors have been used for years as a useful tool since they activate secondary biosynthetic pathways that control the flow of carbon to obtain different plant compounds. One important biotechnological system for the production of plant secondary metabolites or phytochemicals is root culture. Plant roots have a very active metabolism and can biosynthesize a large number of secondary compounds in an exclusive way. Some of these compounds, such as tropane alkaloids, ajmalicine, ginsenosides, etc., can also be biosynthesized in undifferentiated systems, such as cell cultures. In some cases, cell differentiation and organ formation is necessary to produce the bioactive compounds. This review analyses the biotic elicitors most frequently used in adventitious and hairy root cultures from 2010 to 2022, focusing on the plant species, the target secondary metabolite, the elicitor and its concentration, and the yield/productivity of the target compounds obtained. With this overview, it may be easier to work with elicitors in in vitro root cultures and help understand why some are more effective than others.
Collapse
Affiliation(s)
- Miguel Angel Alcalde
- Laboratorio de Fisiologia Vegetal, Facultad de Farmacia, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Edgar Perez-Matas
- Laboratorio de Fisiologia Vegetal, Facultad de Farmacia, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Ainoa Escrich
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Rosa M. Cusido
- Laboratorio de Fisiologia Vegetal, Facultad de Farmacia, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Javier Palazon
- Laboratorio de Fisiologia Vegetal, Facultad de Farmacia, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Mercedes Bonfill
- Laboratorio de Fisiologia Vegetal, Facultad de Farmacia, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-4020267; Fax: +34-93-4029043
| |
Collapse
|
2
|
Sohn SI, Pandian S, Rakkammal K, Largia MJV, Thamilarasan SK, Balaji S, Zoclanclounon YAB, Shilpha J, Ramesh M. Jasmonates in plant growth and development and elicitation of secondary metabolites: An updated overview. FRONTIERS IN PLANT SCIENCE 2022; 13:942789. [PMID: 36035665 PMCID: PMC9407636 DOI: 10.3389/fpls.2022.942789] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Secondary metabolites are incontestably key specialized molecules with proven health-promoting effects on human beings. Naturally synthesized secondary metabolites are considered an important source of pharmaceuticals, food additives, cosmetics, flavors, etc., Therefore, enhancing the biosynthesis of these relevant metabolites by maintaining natural authenticity is getting more attention. The application of exogenous jasmonates (JAs) is well recognized for its ability to trigger plant growth and development. JAs have a large spectrum of action that covers seed germination, hypocotyl growth regulation, root elongation, petal expansion, and apical hook growth. This hormone is considered as one of the key regulators of the plant's growth and development when the plant is under biotic or abiotic stress. The JAs regulate signal transduction through cross-talking with other genes in plants and thereby deploy an appropriate metabolism in the normal or stressed conditions. It has also been found to be an effective chemical elicitor for the synthesis of naturally occurring secondary metabolites. This review discusses the significance of JAs in the growth and development of plants and the successful outcomes of jasmonate-driven elicitation of secondary metabolites including flavonoids, anthraquinones, anthocyanin, xanthonoid, and more from various plant species. However, as the enhancement of these metabolites is essentially measured via in vitro cell culture or foliar spray, the large-scale production is significantly limited. Recent advancements in the plant cell culture technology lay the possibilities for the large-scale manufacturing of plant-derived secondary metabolites. With the insights about the genetic background of the metabolite biosynthetic pathway, synthetic biology also appears to be a potential avenue for accelerating their production. This review, therefore, also discussed the potential manoeuvres that can be deployed to synthesis plant secondary metabolites at the large-scale using plant cell, tissue, and organ cultures.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | | | | | - Senthil Kumar Thamilarasan
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | | | - Yedomon Ange Bovys Zoclanclounon
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Jayabalan Shilpha
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Manikandan Ramesh
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
3
|
Biotechnological production of diterpenoid lactones from cell and organ cultures of Andrographis paniculata. Appl Microbiol Biotechnol 2021; 105:7683-7694. [PMID: 34568965 DOI: 10.1007/s00253-021-11599-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Andrographis paniculata (AP) is a medicinal plant that is traditionally used in Indian, Chinese, Malay, Thai, and Oriental system of medicines to treat various disorders. AP consists of andrographolide (AD), 14-deoxy-11,12-didehydroandrographolide (DDAD), and neoandrographolide (NAD) as major diterpene lactones which has extremely bitter properties; therefore, AP is commonly called "King of bitters." AD, DDAD, and NAD are reported to possess therapeutic values such as antioxidant, immunostimulatory, hepatoprotective, anti-cancer, anti-inflammatory, anti-rheumatoidal, anti-malarial, anti-leishmanial, anti-fertility, anti-obesity, antipyretic, and antimicrobial attributes. According to the Indian Pharmacopoeia, the leaves and tender shoots of AP yield up to 1%, 0.16%, and 0.11% of AD, DDAD, and NAD, respectively, on a dry-weight basis. However, variability in the accumulation of AD, DDAD, and NAD in plants has been reported with respect to species, genotype, season, phenological stage, plant part used, and geography of a region of cultivation. Therefore, cell and tissue culture systems especially cell, shoot, and adventitious root cultures are explored as alternatives for constant and higher production of AD, DDAD, and NAD. This review explores the prospects of exploiting the plant cell and tissue culture systems for the controlled production of AD, DDAD, and NAD. Various strategies such as elicitation by using biological and chemical elicitors are explored for the enhancement of accumulation of AD, DDAD, and NAD in cell and organ cultures. KEY POINTS: • This review explores the possibilities of diterpene lactone production from cell and organ cultures. • Various strategies are explored for the enhanced accumulation of AD, DDAD, and NAD in cell and organ cultures. • Prospects of diterpene lactone production are highlighted.
Collapse
|
4
|
Molecular Cloning and Differential Gene Expression Analysis of 1-Deoxy-D-xylulose 5-Phosphate Synthase (DXS) in Andrographis paniculata (Burm. f) Nees. Mol Biotechnol 2020; 63:109-124. [PMID: 33222042 PMCID: PMC7680635 DOI: 10.1007/s12033-020-00287-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2020] [Indexed: 11/25/2022]
Abstract
Andrographis paniculata 1-deoxy-D-xylulose-5-phosphate synthase (ApDXS) gene (GenBank Accession No MG271749.1) was isolated and cloned from leaves for the first time. Expression of ApDXS gene was carried out in Escherichia coli Rosetta cells. Tissue-specific ApDXS gene expression by quantitative RT-PCR (qRT-PCR) revealed maximum fold expression in the leaves followed by stem and roots. Further, the differential gene expression profile of Jasmonic acid (JA)-elicited in vitro adventitious root cultures showed enhanced ApDXS expression compared to untreated control cultures. A. paniculata 3-hydroxy-3-methylglutaryl-coenzyme A reductase (ApHMGR) gene expression was also studied where it was up-regulated by JA elicitation but showed lower expression compared to ApDXS. The highest expression of both genes was found at 25 µm JA elicitation followed by 50 µm. HPLC data indicated that the transcription levels were correlated with increased andrographolide accumulation. The peak level of andrographolide accumulation was recorded at 25 μM JA (9.38-fold) followed by 50 µM JA (7.58-fold) in elicitation treatments. The in silico generated ApDXS 3D model revealed 98% expected amino acid residues in the favored and 2% in the allowed regions of the Ramachandran plot with 92% structural reliability. Further, prediction of conserved domains and essential amino acids [Arg (249, 252, 255), Asn (307) and Ser (247)] involved in ligand/inhibitor binding was carried out by in silico docking studies. Our present findings will generate genomic information and provide a blueprint for future studies of ApDXS and its role in diterpenoid biosynthesis in A. paniculata.
Collapse
|
5
|
Singh S, Pandey P, Ghosh S, Banerjee S. Anti-cancer labdane diterpenoids from adventitious roots of Andrographis paniculata: augmentation of production prospect endowed with pathway gene expression. PROTOPLASMA 2018; 255:1387-1400. [PMID: 29560544 DOI: 10.1007/s00709-018-1211-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/14/2018] [Indexed: 06/08/2023]
Abstract
Andrographolide (AD) is the time-honoured pharmacologically active constituent of the traditionally renowned medicinal plant-Andrographis paniculata. Advancements in the target-oriented drug discovery process have further unravelled the immense therapeutic credibility of another unique molecule-neoandrographolide (NAD). The escalated market demand of these anti-cancer diterpenes is increasingly facing unrelenting hurdles of demand and supply disparity, attributable to their limited yield. Callus and adventitious root cultures were generated to explore their biosynthetic potentials which first time revealed NAD production along with AD. Optimization of the types and concentrations of auxins along with media form and cultivation time led to the successful tuning towards establishing adventitious roots as a superior production alternative for both AD/NAD. Supplementation of IBA to the NAA + Kn-containing MS medium boosted the overall growth and AD/NAD synthesis in the adventitious roots. Compared to control leaves, the adventitious root exhibited about 2.61- and 8.8-fold higher contents of AD and NAD, respectively. The qRT-PCR involving nine key pathway genes was studied, which revealed upregulation of GGPS1 and HMGR1/2 genes and downregulation of DXS1/2 and HDR1/2 genes in the adventitious root as compared to that in the control leaves. Such observations highlight that in vitro cultures can serve as efficient production alternatives for AD/NAD as the cytosolic genes (HMGR1/2 of MVA pathway) are competent enough to take over from the plastidial genes (DXS1/2 and HDR1/2 of MEP pathway), provided the accredited first branch-point regulatory gene (GGPS) expression and the culture requirements are optimally fulfilled.
Collapse
Affiliation(s)
- Sailendra Singh
- Department of Plant Biotechnology, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, Uttar Pradesh, 226015, India
| | - Pallavi Pandey
- Department of Plant Biotechnology, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, Uttar Pradesh, 226015, India
| | - Sumit Ghosh
- Department of Plant Biotechnology, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, Uttar Pradesh, 226015, India
| | - Suchitra Banerjee
- Department of Plant Biotechnology, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, Uttar Pradesh, 226015, India.
| |
Collapse
|
6
|
Skrzypczak-Pietraszek E, Reiss K, Żmudzki P, Pietraszek J. Enhanced accumulation of harpagide and 8-O-acetyl-harpagide in Melittis melissophyllum L. agitated shoot cultures analyzed by UPLC-MS/MS. PLoS One 2018; 13:e0202556. [PMID: 30133513 PMCID: PMC6104996 DOI: 10.1371/journal.pone.0202556] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 08/06/2018] [Indexed: 11/23/2022] Open
Abstract
Harpagide and its derivatives have valuable medicinal properties, such as anti-inflammatory, analgesic and potential antirheumatic effects. There is the demand for searching plant species containing these iridoids or developing biotechnological methods to obtain the compounds. The present study investigated the effects of methyl jasmonate (MeJa, 50 μM), ethephon (Eth, 50 μM) and L-phenylalanine (L-Phe, 2.4 g/L of medium), added to previously selected variant of Murashige and Skoog medium (supplemented with plant growth regulators: 6-benzylaminopurine 1.0 mg/L, α-naphthaleneacetic acid 0.5 mg/L, gibberellic acid 0.25 mg/L) on the accumulation of harpagide and 8-O-acetyl-harpagide in Melittis melissophyllum L. agitated shoot cultures. Plant material was harvested 2 and 8 days after the supplementation. Iridoids were quantitatively analyzed by the UPLC-MS/MS method in extracts from the biomass and the culture medium. It was found that all of the variants caused an increase in the accumulation of harpagide. In the biomass harvested after 2 days, the highest harpagide content of 247.3 mg/100 g DW was found for variant F (L-Phe and Eth), and the highest 8-O-acetyl-harpagide content of 138 mg/100 g DW for variant E (L-Phe and MeJa). After 8 days, in some variants, a portion of the metabolites was released into the culture medium. Considering the total amount of the compounds (in the biomass and medium), the highest accumulation of harpagide, amounting to 619 mg/100 g DW, was found in variant F, and the highest amount of 8-O-acetyl-harpagide, of 255.4 mg/100 g DW, was found in variant H (L-Phe, MeJa, Eth) when harvested on the 8th day. These amounts were, respectively, 24.7 and 4.8 times higher than in the control culture, and were, respectively, 15 and 6.7 times higher than in the leaves of the soil-grown plant. The total amount of the two iridoids was highest for variant F (0.78% DW) and variant H (0.68% DW) when harvested on the 8th day. The results indicate that the agitated shoot cultures of M. melissophyllum can be a rich source of harpagide and 8-O-acetyl-harpagide, having a potential practical application. To the best of our knowledge we present for the first time the results of the quantitative UPLC-MS/MS analysis of harpagide and 8-O-acetyl-harpagide in M. melissophyllum shoot cultures and the enhancement of their accumulation by means of medium supplementation with elicitors and precursor.
Collapse
Affiliation(s)
- Ewa Skrzypczak-Pietraszek
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, Kraków, Poland
| | - Katarzyna Reiss
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, Kraków, Poland
| | - Paweł Żmudzki
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, Kraków, Poland
| | - Jacek Pietraszek
- Department of Software Engineering and Applied Statistics, Faculty of Mechanical Engineering, Cracow University of Technology, Kraków, Poland
| |
Collapse
|
7
|
Sánchez-Pujante PJ, Borja-Martínez M, Pedreño MÁ, Almagro L. Biosynthesis and bioactivity of glucosinolates and their production in plant in vitro cultures. PLANTA 2017; 246:19-32. [PMID: 28492986 DOI: 10.1007/s00425-017-2705-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/29/2017] [Indexed: 05/24/2023]
Abstract
Glucosinolates are biologically active compounds which are involved in plant defense reaction. The use of plant in vitro cultures and genetic engineering is a promising strategy for their sustainable production. Glucosinolates are a class of secondary metabolites found mainly in Brassicaceae, which contain nitrogen and sulfur in their structures. Glucosinolates are divided into three groups depending on the amino acid from which they are biosynthesized. Aliphatic glucosinolates are generally derived from leucine, valine, methionine, isoleucine and alanine while indole and aromatic glucosinolates are derived from tryptophan and phenylalanine or tyrosine, respectively. These compounds are hydrolyzed by the enzyme myrosinase when plants are stressed by biotic and abiotic factors, obtaining different degradation products. Glucosinolates and their hydrolysis products play an important role in plant defense responses against different types of stresses. In addition, these compounds have beneficial effect on human health because they are strong antioxidants and they have potent cardiovascular, antidiabetic, antimicrobial and antitumoral activities. Due to all the properties described above, the demand for glucosinolates and their hydrolysis products has enormously increased, and therefore, new strategies that allow the production of these compounds to be improved are needed. The use of plant in vitro cultures is emerging as a biotechnological strategy to obtain glucosinolates and their derivatives. This work is focused on the biosynthesis of glucosinolates and the bioactivity of these compounds in plants. In addition, a detailed study on the strategies used to increase the production of several glucosinolates, in particular those synthesized in Brassicaceae, using in vitro plant cultures has been made. Special attention has been paid for increasing the production of glucosinolates and their derivatives using metabolic engineering.
Collapse
Affiliation(s)
| | - María Borja-Martínez
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - María Ángeles Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Lorena Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain.
| |
Collapse
|