1
|
Alshubramy MA, Alotaibi FS, Alkahtani HM, Alamry KA, Hussein MA. C3-Symmetric ligands in drug design: An overview of the challenges and opportunities ahead. Bioorg Med Chem Lett 2024; 103:129702. [PMID: 38490620 DOI: 10.1016/j.bmcl.2024.129702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/10/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
C3-symmetry is a type of star-shaped molecule consisting of a central core and three symmetrically attached chains. These molecules are used in drug discovery due to their unique three-fold rotational symmetry, which allows for specific binding interactions and improved molecular recognition. In this text, we provide an overview of synthetic approaches with C3-symmetry as a pharmaceutical tool: progress, challenges, and opportunities. C3-symmetric ligands offer both challenges and opportunities in drug design. Their unique symmetry can enhance binding interactions, but careful consideration of rigidity, synthetic complexity, and target compatibility is crucial. Further research and advancements in synthetic methods and modeling tools will likely drive their exploration in drug discovery, leading to the discovery of potent C3-symmetric ligands.
Collapse
Affiliation(s)
- Maha A Alshubramy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Faez S Alotaibi
- Department of Chemistry, College of Science, Qassim University Buraidah 51452, Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt.
| |
Collapse
|
2
|
Elwahy AH, Shaaban MR, Abdelhamid IA. Recent advances in the synthesis of star-shaped molecules based on a 1,3,5-triazine core. ADVANCES IN HETEROCYCLIC CHEMISTRY 2023. [DOI: 10.1016/bs.aihch.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
3
|
da Silva L, Donato IA, Gonçalves CAC, Scherf JR, dos Santos HS, Mori E, Coutinho HDM, da Cunha FAB. Antibacterial potential of chalcones and its derivatives against Staphylococcus aureus. 3 Biotech 2023; 13:1. [PMID: 36466769 PMCID: PMC9712905 DOI: 10.1007/s13205-022-03398-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Chalcones are natural substances found in the metabolism of several botanical families. Their structure consists of 1,3-diphenyl-2-propen-1-one and they are characterized by having in their chains an α, β-unsaturated carbonyl system, two phenol rings and a three-carbon chain that unites them. In plants, Chalcones are mainly involved in the biosynthesis of flavonoids and isoflavonoids through the phenylalanine derivation. This group of substances has been shown to be a viable alternative for the investigation of its antibacterial potential, considering the numerous biological activities reported and the increase of the microbial resistance that concern global health agencies. Staphylococcus aureus is a bacterium that has stood out for its ability to adapt and develop resistance to a wide variety of drugs. This literature review aimed to highlight recent advances in the use of Chalcones and derivatives as antibacterial agents against S. aureus, focusing on research articles available on the Science Direct, Pub Med and Scopus data platforms in the period 2015-2021. It was constructed informative tables that provided an overview of which types of Chalcones are being studied more (Natural or Synthetic); its chemical name and main Synthesis Methodology. From the analysis of the data, it was observed that the compounds based on Chalcones have great potential in medicinal chemistry as antibacterial agents and that the molecular skeletons of these compounds as well as their derivatives can be easily obtained through substitutions in the A and B rings of Chalcones, in order to obtain the desired bioactivity. It was verified that Chalcones and derivatives are promising agents for combating the multidrug resistance of S. aureus to drugs. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03398-7.
Collapse
Affiliation(s)
- Larissa da Silva
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Department of Biological Chemistry, URCA, Crato, CE Brazil
| | - Isydorio Alves Donato
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Department of Biological Chemistry, URCA, Crato, CE Brazil
| | | | - Jackelyne Roberta Scherf
- Graduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, UFPE, Recife, PE Brazil
| | - Hélcio Silva dos Santos
- Laboratory of Chemistry of Natural and Synthetic Product, State university of Ceará, UECE, Fortaleza, CE Brazil
| | - Edna Mori
- CECAPE, College of Dentistry, Juazeiro do Norte, CE 63024-015 Brazil
| | | | | |
Collapse
|
4
|
Khazaei-Poul Z, Mahmoodi NO, Taherpour Nahzomi H. Synthesis, biological evaluation and molecular docking studies of a new series of bis-chalcones. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04872-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Kalantarian SJ, Kefayati H, Montazeri N. Synthesis and Antimicrobial Evaluation of Novel
tris
‐Thiadiazole
Derivatives. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Hassan Kefayati
- Department of Chemistry Rasht Branch, Islamic Azad University Rasht Iran
| | - Naser Montazeri
- Department of Chemistry Tonekabon Branch, Islamic Azad University Tonekabon Iran
| |
Collapse
|
6
|
Synthesis of 1, 3, 5-trisubstituted-4,5-dihydro-1H-pyrazole catalyzed by vitamin B1 and its fluorescence properties. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Yazdani Nyaki H, Mahmoodi NO, Pasandideh Nadamani M. Design and synthesis of a new tripod-chromogenic sensor based on a s-triazine and thiazolidine-2,4-dione ring (TCST) for naked-eye detection of Li +. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel tripod-chromogenic sensor based on a s-triazine and thiazolidine-2,4-dione ring (TCST) was designed, synthesized, and applied as a colorimetric probe in aqueous solutions of dimethyl sulfoxide (DMSO). The probe showed a highly sensitive and selective colorimetric sensor for naked-eye detection of Li+, changing from colourless to yellow. The probe’s detection limit toward Li+ was found to be 1.2 μM. The result of the Job plot analysis showed 1:1 stoichiometry for the interaction between the tripod chemosensor and Li+ and this result was confirmed by 1H NMR titration experiments. The probe can also be used for biological activities depending on the results of microbial tests.
Collapse
Affiliation(s)
- Hadiseh Yazdani Nyaki
- Department of Organic Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
- Department of Organic Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | - Nosrat O. Mahmoodi
- Department of Organic Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
- Department of Organic Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | - Meysam Pasandideh Nadamani
- Department of Organic Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
- Department of Organic Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
8
|
Fasihi-Ramandi M, Mahmoodi NO, Ghavidast A, Shirini F, Taherpour Nahzomi H. Synthesis and exploring the excited-state PES of photochromic hydrogen bond-assembled [2]rotaxane based on 1,3-Diazabicyclo-[3.1.0]hex-3-enes. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04425-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Khodadad H, Hatamjafari F, Pourshamsian K, Sadeghi B. Microwave-assisted Synthesis of Novel Pyrazole Derivatives and their Biological Evaluation as Anti-Bacterial Agents. Comb Chem High Throughput Screen 2020; 24:695-700. [PMID: 33076806 DOI: 10.2174/1386207323666201019152206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/11/2020] [Accepted: 09/02/2020] [Indexed: 11/22/2022]
Abstract
AIMS AND OBJECTIVES Microwave-assisted condensation of acetophenone 1 and aromatic aldehydes 2 gave chalcone analogs 3, which were cyclized to pyrazole derivatives 6a-f via the reaction with hydrazine hydrate and oxalic acid in the presence of the catalytic amount of acetic acid in ethanol. MATERIALS AND METHODS The structural features of the synthesized compounds were characterized by melting point, FT-IR, 1H, 13C NMR and elemental analysis. RESULTS The antibacterial activities of the synthesized pyrazoles were evaluated against three gram-positive bacteria, such as Enterococcus durans, Staphylococcus aureus, Bacillus subtilis and two gram-negative bacteria such as Escherichia coli and Salmonella typhimurium. CONCLUSION All the synthesized pyrazoles showed relatively high antibacterial activity against S. aureus strain, and none of them demonstrated antibacterial activity against E. coli.
Collapse
Affiliation(s)
- Hadis Khodadad
- Department of Chemistry, Faculty of Science, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Farhad Hatamjafari
- Department of Chemistry, Faculty of Science, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Khalil Pourshamsian
- Department of Chemistry, Faculty of Science, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Babak Sadeghi
- Department of Chemistry, Faculty of Science, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| |
Collapse
|
10
|
Filian H, Kohzadian A, Mohammadi M, Ghorbani‐Choghamarani A, Karami A. Pd(0)‐guanidine@MCM‐41: a very effective catalyst for rapid production of bis (pyrazolyl)methanes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5579] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hossein Filian
- Department of Chemistry, Khuzestan Science and Research BranchIslamic Azad University Ahvaz Iran
| | - Alireza Kohzadian
- Young Researchers Club, Ilam BranchIslamic Azad University, Ilam Iran
| | - Masoud Mohammadi
- Department of Chemistry, Faculty of ScienceIlam University P. O. Box 69315516 Ilam Iran
| | | | - Amirali Karami
- Department of Chemistry, Khuzestan Science and Research BranchIslamic Azad University Ahvaz Iran
| |
Collapse
|
11
|
Diab HM, Abdelmoniem AM, Shaaban MR, Abdelhamid IA, Elwahy AHM. An overview on synthetic strategies for the construction of star-shaped molecules. RSC Adv 2019; 9:16606-16682. [PMID: 35516393 PMCID: PMC9064441 DOI: 10.1039/c9ra02749a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022] Open
Abstract
Strategies for the synthesis of star-shaped molecules have been in high demand in the last decades due to the importance of those compounds in various fields. The distinctly different properties of these compounds compared to their linear analogues make them versatile building blocks for the formation of mesophases of interesting mesomorphic and photophysical properties. Moreover, the applications of star-shaped molecules as building units for dendrimers as well as in supramolecular host-guest chemistry have also been recently studied. The star-shaped molecules mentioned in this review are classified according to the central core as well as the type of side arms. The properties and applications of these compounds are described in the appropriate contexts. This report summarizes the recent advances in this area.
Collapse
Affiliation(s)
- Hadeer M Diab
- Chemistry Department, Faculty of Science, Cairo University Giza Egypt
| | - Amr M Abdelmoniem
- Chemistry Department, Faculty of Science, Cairo University Giza Egypt
| | - Mohamed R Shaaban
- Chemistry Department, Faculty of Science, Cairo University Giza Egypt
| | | | - Ahmed H M Elwahy
- Chemistry Department, Faculty of Science, Cairo University Giza Egypt
| |
Collapse
|
12
|
Sheykhi-Estalkhjani A, Mahmoodi NO, Yahyazadeh A, Pasandideh Nadamani M, Taherpour Nahzomi H. Design, two-directional synthesis, DFT study of new pyrimido[5,4-d]pyrimidine-2,8-dione derivatives. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
13
|
Design and synthesis of novel bis-hydroxychalcones with consideration of their biological activities. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3290-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Mohammadi Zeydi M, Mahmoodi NO. Overview on Developed Synthesis Methods of Triazepane Heterocycles. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Nosrat O. Mahmoodi
- Department of Organic Chemistry, Faculty of Sciences; University of Guilan; Rasht Iran
| |
Collapse
|