1
|
Zainuddin MIF, Ahmad AL, Shah Buddin MMH. Polydimethylsiloxane/Magnesium Oxide Nanosheet Mixed Matrix Membrane for CO 2 Separation Application. MEMBRANES 2023; 13:membranes13030337. [PMID: 36984724 PMCID: PMC10051079 DOI: 10.3390/membranes13030337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 05/31/2023]
Abstract
Carbon dioxide (CO2) concentration is now 50% higher than in the preindustrial period and efforts to reduce CO2 emission through carbon capture and utilization (CCU) are blooming. Membranes are one of the attractive alternatives for such application. In this study, a rubbery polymer polydimethylsiloxane (PDMS) membrane is incorporated with magnesium oxide (MgO) with a hierarchically two-dimensional (2D) nanosheet shape for CO2 separation. The average thickness of the synthesized MgO nanosheet in this study is 35.3 ± 1.5 nm. Based on the pure gas separation performance, the optimal loading obtained is at 1 wt.% where there is no observable significant agglomeration. CO2 permeability was reduced from 2382 Barrer to 1929 Barrer while CO2/N2 selectivity increased from only 11.4 to 12.7, and CO2/CH4 remained relatively constant when the MMM was operated at 2 bar and 25 °C. Sedimentation of the filler was observed when the loading was further increased to 5 wt.%, forming interfacial defects on the bottom side of the membrane and causing increased CO2 gas permeability from 1929 Barrer to 2104 Barrer as compared to filler loading at 1 wt.%, whereas the CO2/N2 ideal selectivity increased from 12.1 to 15.0. Additionally, this study shows that there was no significant impact of pressure on separation performance. There was a linear decline of CO2 permeability with increasing upstream pressure while there were no changes to the CO2/N2 and CO2/CH4 selectivity.
Collapse
Affiliation(s)
- Muhd Izzudin Fikry Zainuddin
- School of Chemical Engineering, Universiti Sains Malaysia Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Universiti Sains Malaysia Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia
| | | |
Collapse
|
2
|
Zhang Q, Guo H, Muradi G, Zhang B. Tuning the Multi-Scale Structure of Mixed-Matrix Membranes for Upgrading CO2 Separation Performances. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Kunalan S, Palanivelu K. Polymeric composite membranes in carbon dioxide capture process: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38735-38767. [PMID: 35275372 DOI: 10.1007/s11356-022-19519-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Carbon dioxide (CO2) emission to the atmosphere is the prime cause of certain environmental issues like global warming and climate change, in the present day scenario. Capturing CO2 from various stationary industrial emission sources is one of the initial steps to control the aforementioned problems. For this concern, a variety of resources, such as liquid absorbents, solid adsorbents, and membranes, have been utilized for CO2 capturing from various emission sources. Focused on membrane-based CO2 capture, polymeric membranes with composite structure (polymeric composite membrane) offer a better performance in CO2 capturing process than other membranes, due to the composite structure it offers higher gas flux and less material usage, thus facile to use high performed expensive material for membrane fabrication and achieved good efficacy in CO2 capture. This compressive review delivers the utilization of different polymeric composite membranes in CO2 capturing applications. Further, the types of polymeric materials used and the different physicochemical modifications of those membrane materials and their CO2 capturing ability are briefly discussed in the text. In conclusion, the current status and possible perspective ways to improve the CO2 capture process in industrial CO2 gas separation applications are described in this review.
Collapse
Affiliation(s)
- Shankar Kunalan
- Centre for Environmental Studies, Anna University, Chennai, 600 025, India
| | - Kandasamy Palanivelu
- Centre for Environmental Studies, Anna University, Chennai, 600 025, India.
- Centre for Climate Change and Disaster Management, Anna University, Chennai, 600 025, India.
| |
Collapse
|
4
|
He QP, Wang YY, Wang PF, Dou XM. Preparation of modified MFI-type/PDMS composite membranes for the separation of dichlorobenzene isomers via pervaporation. RSC Adv 2022; 12:16131-16140. [PMID: 35733675 PMCID: PMC9150433 DOI: 10.1039/d2ra01950g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
Zeolite-polymer composite membranes have become promising and effective materials for the pervaporative separation of liquids, especially for isomeric mixtures. In this paper, silicalite-1/PDMS composite membranes have been used to investigate the separation of dichlorobenzene (DCB) isomers via pervaporation for the first time. Silicalite-1 zeolites modified by the silane coupling agent, NH3-C3H6-Si(OC2H5)3, have been incorporated into polydimethylsiloxane (PDMS). Then, the silicalite-1/PDMS composite membranes have been successfully prepared on porous polyvinylidene fluoride (PVDF) supports. The morphology and structure of the silicalite-1 zeolites and silicalite-1/PDMS composite membranes have been characterized by XRD, FTIR, SEM and BET techniques. The results show that the modified silicalite-1 zeolite particles have smaller pore sizes dispersed more uniformly in the active layers of the silicalite-1/PDMS composite membranes and present fewer aggregation and pinholes formed by the accumulation of zeolite particles. The silicalite-1/PDMS composite membranes are all dense and continuous with good homogeneity. To evaluate the pervaporative separation performance of the DCB isomers, the unmodified and modified silicalite-1/PDMS composite membranes have been further tested in single-isomer and binary-isomer systems at 60 °C. The modified silicalite-1/PDMS composite membranes present higher DCB isomer separation factors. The separation factors of the modified silicalite-1/PDMS composite membranes in the binary-isomer systems for p-/o-DCB and p-/m-DCB are 3.53 and 5.63, respectively. The permeate flux of p-DCB through the modified silicalite-1/PDMS composite membranes in the p-/o-DCB binary-isomer system is 116.7 g m-2 h-1 and in the p-/m-DCB binary-isomer system, it is 93.5 g m-2 h-1. The result provides a new approach towards the pervaporative separation of DCB isomers from their mixture for future industrialization applications.
Collapse
Affiliation(s)
- Qiu-Ping He
- Institute of Photonics & Bio-medicine, School of Science, East China University of Science and Technology Shanghai 200062 China
- Shanghai Luqiang New Materials Co., Ltd Shanghai 200062 China +86-21-69577696
| | - Ying-Ying Wang
- Shanghai Luqiang New Materials Co., Ltd Shanghai 200062 China +86-21-69577696
- State Key Laboratory of Polyolefin Catalytic Technology and High Performance Material, Shanghai Research Institute of Chemical Industry Co., Ltd Shanghai 200062 China
| | - Peng-Fei Wang
- Shanghai Luqiang New Materials Co., Ltd Shanghai 200062 China +86-21-69577696
- State Key Laboratory of Polyolefin Catalytic Technology and High Performance Material, Shanghai Research Institute of Chemical Industry Co., Ltd Shanghai 200062 China
| | - Xiao-Ming Dou
- Institute of Photonics & Bio-medicine, School of Science, East China University of Science and Technology Shanghai 200062 China
| |
Collapse
|
5
|
Ahmadi R, Sedighian R, Sanaeepur H, Ebadi Amooghin A, Lak S. Polyphenylsulfone/zinc ion‐exchanged zeolite Y nanofiltration mixed matrix membrane for water desalination. J Appl Polym Sci 2022. [DOI: 10.1002/app.52262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Reyhane Ahmadi
- Department of Chemical Engineering, Faculty of Engineering Arak University Arak Iran
| | - Reyhane Sedighian
- Department of Chemical Engineering, Faculty of Engineering Arak University Arak Iran
| | - Hamidreza Sanaeepur
- Department of Chemical Engineering, Faculty of Engineering Arak University Arak Iran
| | - Abtin Ebadi Amooghin
- Department of Chemical Engineering, Faculty of Engineering Arak University Arak Iran
| | - Shima Lak
- Department of Chemical Engineering, Faculty of Engineering Arak University Arak Iran
| |
Collapse
|
6
|
Bandehali S, Ebadi Amooghin A, Sanaeepur H, Ahmadi R, Fuoco A, Jansen JC, Shirazian S. Polymers of intrinsic microporosity and thermally rearranged polymer membranes for highly efficient gas separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Hafeez S, Safdar T, Pallari E, Manos G, Aristodemou E, Zhang Z, Al-Salem SM, Constantinou A. CO2 capture using membrane contactors: a systematic literature review. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1992-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractWith fossil fuel being the major source of energy, CO2 emission levels need to be reduced to a minimal amount namely from anthropogenic sources. Energy consumption is expected to rise by 48% in the next 30 years, and global warming is becoming an alarming issue which needs to be addressed on a thorough technical basis. Nonetheless, exploring CO2 capture using membrane contactor technology has shown great potential to be applied and utilised by industry to deal with post- and pre-combustion of CO2. A systematic review of the literature has been conducted to analyse and assess CO2 removal using membrane contactors for capturing techniques in industrial processes. The review began with a total of 2650 papers, which were obtained from three major databases, and then were excluded down to a final number of 525 papers following a defined set of criteria. The results showed that the use of hollow fibre membranes have demonstrated popularity, as well as the use of amine solvents for CO2 removal. This current systematic review in CO2 removal and capture is an important milestone in the synthesis of up to date research with the potential to serve as a benchmark databank for further research in similar areas of work. This study provides the first systematic enquiry in the evidence to research further sustainable methods to capture and separate CO2.
Collapse
|
8
|
Dong S, Wang Z, Sheng M, Qiao Z, Wang J. Scaling up of defect-free flat membrane with ultra-high gas permeance used for intermediate layer of multi-layer composite membrane and oxygen enrichment. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Denktaş C. Mechanical and film formation behavior from PDMS/NaY zeolite composite membranes. J Appl Polym Sci 2019. [DOI: 10.1002/app.48549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Cenk Denktaş
- Department of PhysicsY.T.Ü. Esenler Istanbul Turkey
| |
Collapse
|
10
|
Fauzan NAB, Mannan HA, Nasir R, Mohshim DFB, Mukhtar H. Various Techniques for Preparation of Thin‐Film Composite Mixed‐Matrix Membranes for CO
2
Separation. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nur Aqilah Bt Fauzan
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Seri Iskandar Perak Malaysia
| | - Hafiz Abdul Mannan
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Seri Iskandar Perak Malaysia
| | - Rizwan Nasir
- University of JeddahDepartment of Chemical Engineering 23890 Jeddah Saudi Arabia
| | - Dzeti Farhah Bt Mohshim
- Universiti Teknologi PETRONASPetroleum Engineering Department 32610 Seri Iskandar Perak Malaysia
| | - Hilmi Mukhtar
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Seri Iskandar Perak Malaysia
| |
Collapse
|
11
|
Aminosilane cross-linked poly ether-block-amide PEBAX 2533: Characterization and CO2 separation properties. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0323-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Che S, Du T, Song YL, Fang X, Wang YS. Study on Adsorption Properties of Ammonium Exchanged Chabazite for CO 2. Z Anorg Allg Chem 2019. [DOI: 10.1002/zaac.201900040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuai Che
- Department State Environmental Protection Key Laboratory on Eco-Industry; School of Metallurgy; Northeastern University of China; No. 3-11, Wenhua Road Shenyang Heping District P. R. China
| | - Tao Du
- Department State Environmental Protection Key Laboratory on Eco-Industry; School of Metallurgy; Northeastern University of China; No. 3-11, Wenhua Road Shenyang Heping District P. R. China
| | - Yan Li Song
- Department State Environmental Protection Key Laboratory on Eco-Industry; School of Metallurgy; Northeastern University of China; No. 3-11, Wenhua Road Shenyang Heping District P. R. China
| | - Xin Fang
- Department State Environmental Protection Key Laboratory on Eco-Industry; School of Metallurgy; Northeastern University of China; No. 3-11, Wenhua Road Shenyang Heping District P. R. China
| | - Yi Song Wang
- Department State Environmental Protection Key Laboratory on Eco-Industry; School of Metallurgy; Northeastern University of China; No. 3-11, Wenhua Road Shenyang Heping District P. R. China
| |
Collapse
|
13
|
|
14
|
Chuah CY, Goh K, Yang Y, Gong H, Li W, Karahan HE, Guiver MD, Wang R, Bae TH. Harnessing Filler Materials for Enhancing Biogas Separation Membranes. Chem Rev 2018; 118:8655-8769. [DOI: 10.1021/acs.chemrev.8b00091] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chong Yang Chuah
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Kunli Goh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Yanqin Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Heqing Gong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Wen Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - H. Enis Karahan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Michael D. Guiver
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Rong Wang
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 649798, Singapore
| | - Tae-Hyun Bae
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| |
Collapse
|