Borzooei M, Norouzi M, Mohammadi M. Construction of a Dual-Functionalized Acid-Base Nanocatalyst via HEPES Buffer Functionalized on Fe
3O
4 as a Reusable Catalyst for Annulation Reactions.
LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024;
40:13397-13411. [PMID:
38900039 DOI:
10.1021/acs.langmuir.4c00563]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Herein, we present a highly efficient dual-functionalized acid-base nanocatalyst, denoted as Fe3O4@GLYMO-HEPES, featuring sulfuric acid and tertiary amines as its dual functional components. This catalyst is synthesized through the immobilization of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) as the source of these functionalities onto magnetite (Fe3O4) using 3-glycidoxypropyltriethoxysilane (GLYMO) as a linker. Characterization studies confirm the integrity of the Fe3O4 core, with the GLYMO-HEPES coating exhibiting no phase changes. Furthermore, Fe3O4@GLYMO-HEPES nanoparticles demonstrate a uniform size distribution without aggregation. Notably, the catalyst exhibits remarkable stability up to 200 °C and possesses a saturation magnetization value of 31.5 emu/g, facilitating easy recovery via magnetic separation. These findings underscore the potential of Fe3O4@GLYMO-HEPES as a versatile and recyclable nanocatalyst for various applications. Its catalytic ability was evaluated in the synthesis of various pyrano[2,3-c]pyrazoles and 2-amino-3-cyano-4H-chromenes through a tandem Knorr-Knoevenagel-Michael-Thorpe-Ziegler-type heterocyclization mechanism, using different aldehydes. A wide range of fused heterocycles was synthesized having good to excellent yields. The process is cost-effective, safe, sustainable, and scalable, and the catalyst can be reused up to five times. The prepared catalyst was found to be highly stable and heterogeneous and showed good recyclability.
Collapse