1
|
Charalambous C, Xu S, Ding S, Chansai S, Asuquo E, Torres Lopez A, Parlett CMA, Gilmour JD, Garforth A, Hardacre C. Non-thermal plasma activated CO2 hydrogenation over K- and La- promoted layered-double hydroxide supported Ni catalysts. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.1027167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The catalytic conversion of CO2 to CH4 and CO over nickel particles supported on layered-double hydroxide (MgAl) with different metal promoters was investigated under non-thermal plasma (NTP) conditions. It has been shown that lanthanum-promoted Ni catalysts significantly enhanced the CO2 conversion in comparison to the 10Ni/MgAl catalyst (33.4% vs. 89.3%). In comparison, for the potassium-promoted catalysts, CO2 conversion is similar to that of 10Ni/MgAl but the CO selectivity increased significantly (35.7% vs. 62.0%). The introduction of La and K to Ni catalysts increased the Ni dispersion and improved the reducibility of Ni species, thus affecting CO2 conversion and product selectivity. In situ DRIFTS showed similar reaction pathways for La- and K- promoted catalysts with Ni catalysts. However, the La and K promoters significantly improved the formation of formate species on the Ni surface, facilitating CO2 conversion to useful products.
Collapse
|
2
|
Dai H, Xiong S, Zhu Y, Zheng J, Huang L, Zhou C, Deng J, Zhang X. NiCe bimetallic nanoparticles embedded in hexagonal mesoporous silica (HMS) for reverse water gas shift reaction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Shafiee P, Alavi SM, Rezaei M. Investigation of the effect of cobalt on the Ni–Al2O3 catalyst prepared by the mechanochemical method for CO2 methanation. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04700-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Bahmanpour AM, Nuguid RJG, Savereide LM, Mensi MD, Ferri D, Luterbacher JS, Kröcher O. Restructuring Ni/Al2O3 by addition of Ga to shift product selectivity in CO2 hydrogenation: The role of hydroxyl groups. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Gu M, Dai S, Qiu R, Ford ME, Cao C, Wachs IE, Zhu M. Structure–Activity Relationships of Copper- and Potassium-Modified Iron Oxide Catalysts during Reverse Water–Gas Shift Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03792] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mengwei Gu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Runfa Qiu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Michael E. Ford
- Operando Molecular Spectroscopy & Catalysis Laboratory, Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Chenxi Cao
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Israel E. Wachs
- Operando Molecular Spectroscopy & Catalysis Laboratory, Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Application Prospect of K Used for Catalytic Removal of NOx, COx, and VOCs from Industrial Flue Gas: A Review. Catalysts 2021. [DOI: 10.3390/catal11040419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
NOx, COx, and volatile organic compounds (VOCs) widely exist in motor vehicle exhaust, coke oven flue gas, sintering flue gas, and pelletizing flue gas. Potassium species have an excellent promotion effect on various catalytic reactions for the treatment of these pollutants. This work reviews the promotion effects of potassium species on the reaction processes, including adsorption, desorption, the pathway and selectivity of reaction, recovery of active center, and effects on the properties of catalysts, including basicity, electron donor characteristics, redox property, active center, stability, and strong metal-to support interaction. The suggestions about how to improve the promotion effects of potassium species in various catalytic reactions are put forward, which involve controlling carriers, content, preparation methods and reaction conditions. The promotion effects of different alkali metals are also compared. The article number about commonly used active metals and promotion ways are also analyzed by bibliometric on NOx, COx, and VOCs. The promotion mechanism of potassium species on various reactions is similar; therefore, the application prospect of potassium species for the coupling control of multi-pollutants in industrial flue gas at low-temperature is described.
Collapse
|
7
|
Sakhaei Z, Rezaei M. Mechanochemical synthesis of ZnO.Al 2O 3 powders with various Zn/Al molar ratios and their applications in reverse water-gas shift reaction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13790-13799. [PMID: 33196999 DOI: 10.1007/s11356-020-11536-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
ZnO.Al2O3 powders with various Zn/Al molar ratios were prepared via a solid-state reaction using a mechanochemical synthesis method, and the selected powder with a ZnO/Al2O3 molar ratio of 1 was used as support for the preparation of 15% Ni/ZnO.Al2O3 catalyst. The activity of the prepared catalyst was studied in the reverse water-gas shift (RWGS) reaction. The synthesized samples were characterized by XRD, BET, TGA/DTA, TPR, FTIR, and SEM techniques. The results indicated that the prepared powders possessed mesoporous structure with pores having small diameters with crystallite sizes in the nanometer range (6.35-12.08 nm). The results showed that the increment in Zn/Al molar ratio reduced the BET area and the pure Al2O3 powder possessed the highest BET area (235.4 m2 g-1). The results also indicated that the rise of calcination temperature remarkably decreased the BET area. The prepared nickel-based catalyst also exhibited a high activity in RWGS reaction.
Collapse
Affiliation(s)
- Zeinab Sakhaei
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
| | - Mehran Rezaei
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
8
|
Chen X, Chen Y, Song C, Ji P, Wang N, Wang W, Cui L. Recent Advances in Supported Metal Catalysts and Oxide Catalysts for the Reverse Water-Gas Shift Reaction. Front Chem 2020; 8:709. [PMID: 33110907 PMCID: PMC7489098 DOI: 10.3389/fchem.2020.00709] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
The reverse water-gas shift reaction (RWGSR), a crucial stage in the conversion of abundant CO2 into chemicals or hydrocarbon fuels, has attracted extensive attention as a renewable system to synthesize fuels by non-traditional routes. There have been persistent efforts to synthesize catalysts for industrial applications, with attention given to the catalytic activity, CO selectivity, and thermal stability. In this review, we describe the thermodynamics, kinetics, and atomic-level mechanisms of the RWGSR in relation to efficient RWGSR catalysts consisting of supported catalysts and oxide catalysts. In addition, we rationally classify, summarize, and analyze the effects of physicochemical properties, such as the morphologies, compositions, promoting abilities, and presence of strong metal-support interactions (SMSI), on the catalytic performance and CO selectivity in the RWGSR over supported catalysts. Regarding oxide catalysts (i.e., pure oxides, spinel, solid solution, and perovskite-type oxides), we emphasize the relationships among their surface structure, oxygen storage capacity (OSC), and catalytic performance in the RWGSR. Furthermore, the abilities of perovskite-type oxides to enhance the RWGSR with chemical looping cycles (RWGSR-CL) are systematically illustrated. These systematic introductions shed light on development of catalysts with high performance in RWGSR.
Collapse
Affiliation(s)
- Xiaodong Chen
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, China
- Center for Clean Energy Technology, Faculty of Science, School of Mathematical and Physical Science, University of Technology Sydney, Sydney, NSW, Australia
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China
| | - Ya Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chunyu Song
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, China
- Center for Clean Energy Technology, Faculty of Science, School of Mathematical and Physical Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Peiyi Ji
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Nannan Wang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, China
| | - Wenlong Wang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, China
| | - Lifeng Cui
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, China
| |
Collapse
|