1
|
Radwan IT, Bagato N, Ebaid MS, Hegazy MM, Farghali MA, Selim A, Gattan HS, Alruhaili MH, Baz MM, Alkhaibari AM. Synthesis of eco-friendly lipid-magnetite nanocomposite encapsulated Poinciana extract as promising insecticide against Culex pipiens. Sci Rep 2024; 14:30456. [PMID: 39668148 PMCID: PMC11638267 DOI: 10.1038/s41598-024-81078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024] Open
Abstract
Mosquito-borne diseases represent a growing health challenge over time. Nanostructured lipid carriers (NLCs) are the second generation of solid lipid nanoparticles (SLNs), and they continue to attract significant interest as potential diagnostic and therapeutic tools in disease inhibition and insect control. Activated ingredients presented in the Poinciana leaves were extracted and GC-MS data indicated an increased abundance of terpenes, flavonoids, and phenolic substances. Poinciana extract was encapsulated to the vicinity of nanostructure lipid carrier, Po-NLC, and surface modified with magnetic nanoparticles, Po-NLC-MNPs. The synthesized nanoparticles depicted average particle size of 73.2 and 75.55 nm while zeta potential of (- 29.4) and (‒ 4.44 mV) for Po-NLC and Po-NLC-MNPs, respectively. Transmission electron microscope and morphology determination showed regular, irregular spherical and oval shapes with diverse single particle size. X-rays diffraction pattern of the freely synthesized MNPs was compared to the decorated NLC and the results manifested that the NLC was successfully decorated with MNPs. The larvicidal activity of plant extract, Poinciana extract (Po), and their nanoparticle conjugates against 3rd instar larvae of Culex pipiens was evaluated at 50, 100, 200, 500, 1000, and 1500 ppm concentrations. Both high and low concentrations of Po-NLC-MNPs, indicated potential larval mortality than plant extracts (Po extract) itself. The mortality rate reached 100% for 3rd instar larvae. Based on their relative toxicity, (Po-NLC-MNPs) was the best at killing larvae, followed by Po-NLC. The synthesized nps were checked for their cytotoxic effect against wi38 cell line. The in-vitro cytotoxicity results indicated that there was no significant cytotoxicity and the nanocomposite barely caused weak changes in the tested cells. The synthesized nanoparticles have potential to create a new generation of eco-friendly, effective alternatives for controlling mosquito-borne diseases.
Collapse
Affiliation(s)
- Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, 11835, Egypt.
| | - Noha Bagato
- Egyptian Petroleum Research Institute (EPRI), PO Box 11727, Nasr City, Cairo, Egypt
| | - Manal S Ebaid
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Maysa M Hegazy
- Biology Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Mohamed A Farghali
- Nanotechnology and Advanced Materials Central Lab (NAMCL), Regional Center for Food and Feed (RCFF), Agricultural Research Center (ARC), Giza, Egypt
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), College of Veterinary Medicine, Benha University, Toukh, 13736, Egypt.
| | - Hattan S Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Mohammed H Alruhaili
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Mohamed M Baz
- Entomology Department, Faculty of Science, Benha University, Benha, 13518, Qalyubiya, Egypt
| | - Abeer Mousa Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| |
Collapse
|
2
|
Luján AP, Bhat MF, Tsaturyan S, van Merkerk R, Fu H, Poelarends GJ. Tailored photoenzymatic systems for selective reduction of aliphatic and aromatic nitro compounds fueled by light. Nat Commun 2023; 14:5442. [PMID: 37673927 PMCID: PMC10482925 DOI: 10.1038/s41467-023-41194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
The selective enzymatic reduction of nitroaliphatic and nitroaromatic compounds to aliphatic amines and amino-, azoxy- and azo-aromatics, respectively, remains a persisting challenge for biocatalysis. Here we demonstrate the light-powered, selective photoenzymatic synthesis of aliphatic amines and amino-, azoxy- and azo-aromatics from the corresponding nitro compounds. The nitroreductase from Bacillus amyloliquefaciens, in synergy with a photocatalytic system based on chlorophyll, promotes selective conversions of electronically-diverse nitroarenes into a series of aromatic amino, azoxy and azo products with excellent yield (up to 97%). The exploitation of an alternative nitroreductase from Enterobacter cloacae enables the tailoring of a photoenzymatic system for the challenging synthesis of aliphatic amines from nitroalkenes and nitroalkanes (up to 90% yield). This photoenzymatic reduction overcomes the competing bio-Nef reaction, typically hindering the complete enzymatic reduction of nitroaliphatics. The results highlight the usefulness of nitroreductases to create selective photoenzymatic systems for the synthesis of precious chemicals, and the effectiveness of chlorophyll as an innocuous photocatalyst, enabling the use of sunlight to drive the photobiocatalytic reactions.
Collapse
Affiliation(s)
- Alejandro Prats Luján
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Mohammad Faizan Bhat
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sona Tsaturyan
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Ronald van Merkerk
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Haigen Fu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
3
|
Maurya R, Ali U, Kaul S, Bhaiyya R, Singh RP, Mazumder K. Immobilization of α-transglucosidase on silica-coated magnetic nanoparticles and its application for production of isomaltooligosaccharide from the potato peel. Sci Rep 2023; 13:12708. [PMID: 37543692 PMCID: PMC10404235 DOI: 10.1038/s41598-023-38266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/05/2023] [Indexed: 08/07/2023] Open
Abstract
In this study, the production of isomaltooligosaccharide from potato peel starch was carried out in three steps: liquefaction, saccharification, and transglucosylation. Further, cloning α-transglucosidase gene from Aspergillus niger (GH31 family), transforming into E. coli BL21 (DE3), overexpressing and purifying the resulting protein for the production of α-transglucosidase. The generated α-transglucosidase was then bound with magnetic nanoparticles, which improved reusability up to 5 cycles with more than 60% activity. All the modifications were characterized using the following methods: Fourier transform infra-red analysis, Transmission Electron Microscopy, Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray spectroscopy, X-Ray Diffraction Spectroscopy, Thermogravimetric Analysis, and Dynamic Light Scattering (DLS) analysis. Further, the optimum conditions for transglucosylation were determined by RSM as follows: enzyme-to-substrate ratio 6.9 U g-1, reaction time 9 h, temperature 45 °C, and pH 5.5 with a yield of 70 g l-1 (± 2.1). MALDI-TOF-MS analysis showed DP of the IMOs in ranges of 2-10. The detailed structural characterization of isomaltooligosaccharide by GC-MS and NMR suggested the α-(1 → 4) and α-(1 → 6)-D-Glcp residues as major constituents along with minor α-(1 → 2) and α-(1 → 3) -D-Glcp residues.
Collapse
Affiliation(s)
- Rohit Maurya
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab, 140306, India
- Regional Centre for Biotechnology, Faridabad-Gurgaon, Haryana, 121001, India
| | - Usman Ali
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Sunaina Kaul
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Raja Bhaiyya
- Department of Industrial Biotechnology, Gujarat Biotechnology University, North Gate Gujarat International Finance Tech-City, Gandhinagar, Gujarat, 382355, India
| | - Ravindra Pal Singh
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab, 140306, India
- Department of Industrial Biotechnology, Gujarat Biotechnology University, North Gate Gujarat International Finance Tech-City, Gandhinagar, Gujarat, 382355, India
| | - Koushik Mazumder
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
4
|
Bio-Fabrication of Trimetallic Nanoparticles and Their Applications. Catalysts 2023. [DOI: 10.3390/catal13020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nanoparticles are materials whose size is less than 100 nm. Because of their distinctive physical and chemical characteristics, nanoparticles have drawn considerable interest in a variety of fields. Biosynthesis of nanoparticles is a green and environmentally friendly technology, which requires fewer chemical reagents, precursors, and catalysts. There are various types of nanomaterials, out of which trimetallic nanoparticles are receiving considerable interest in recent years. Trimetallic nanoparticles possess unique catalytic, biomedical, antimicrobial, active food packaging, and sensing applications as compared to monometallic or bimetallic nanoparticles. Trimetallic nanoparticles are currently synthesized by various methods such as chemical reduction, microwave-assisted, thermal, precipitation, and so on. However, most of these chemical and physical methods are expensive and toxic to the environment. Biological synthesis is one of the promising methods, which includes the use of bacteria, plants, fungi, algae, waste biomass, etc., as reducing agents. Secondary metabolites present in the biological agents act as capping and reducing agents. Green trimetallic nanoparticles can be used for different applications such as anticancer, antibacterial, antifungal, catalytic activity, etc. This review provides an overview of the synthesis of trimetallic nanoparticles using biological agents, and their applications in different areas such as anticancer, antimicrobial activity, drug delivery, catalytic activity, etc. Finally, current challenges, future prospects, and conclusions are highlighted.
Collapse
|
5
|
A Direct Method for the Efficient Synthesis of Hydroxyalkyl-Containing Azoxybenzenes. MOLBANK 2022. [DOI: 10.3390/m1384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Reaction of nitrobenzyl alcohol with glucose (200 mol%) in the presence of NaOH in water-ethanol medium gave 1,2-bis(4-(hydroxymethyl)phenyl)diazene oxide, 1,2-bis(2-(hydroxymethyl)phenyl)diazene oxide and 1,2-bis(4-(1-hydroxyethyl)phenyl)diazene oxide in 76%, 76% and 72% yields, respectively.
Collapse
|
6
|
Magnetite-Silica Core/Shell Nanostructures: From Surface Functionalization towards Biomedical Applications—A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112211075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The interconnection of nanotechnology and medicine could lead to improved materials, offering a better quality of life and new opportunities for biomedical applications, moving from research to clinical applications. Magnetite nanoparticles are interesting magnetic nanomaterials because of the property-depending methods chosen for their synthesis. Magnetite nanoparticles can be coated with various materials, resulting in “core/shell” magnetic structures with tunable properties. To synthesize promising materials with promising implications for biomedical applications, the researchers functionalized magnetite nanoparticles with silica and, thanks to the presence of silanol groups, the functionality, biocompatibility, and hydrophilicity were improved. This review highlights the most important synthesis methods for silica-coated with magnetite nanoparticles. From the presented methods, the most used was the Stöber method; there are also other syntheses presented in the review, such as co-precipitation, sol-gel, thermal decomposition, and the hydrothermal method. The second part of the review presents the main applications of magnetite-silica core/shell nanostructures. Magnetite-silica core/shell nanostructures have promising biomedical applications in magnetic resonance imaging (MRI) as a contrast agent, hyperthermia, drug delivery systems, and selective cancer therapy but also in developing magnetic micro devices.
Collapse
|
7
|
Chemoselective reduction of nitroarenes, N-acetylation of arylamines, and one-pot reductive acetylation of nitroarenes using carbon-supported palladium catalytic system in water. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04469-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Gilanizadeh M, Zeynizadeh B. Synthesis of quaternary metal oxides immobilized on APTMS-coated magnetite: an efficient and reusable nanocatalyst for Knoevenagel condensation under green conditions. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A simple, green, and highly efficient procedure has been developed for Knoevenagel condensation of malononitrile and aromatic aldehydes to the corresponding benzylidenemalononitriles in the presence of Fe3O4@APTMS@Zr–Sb–Ni–Zn nanoparticles (NPs) as a durable nanocatalyst. The heterogeneous nanocomposite was prepared by immobilization of Zr–Sb–Ni–Zn mixed metal oxides on APTMS-coated magnetite. The synthesized catalyst was characterized using Fourier-transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD), vibration sample magnetometer (VSM), transmission electron microscopy (TEM), and Brunauer–Emmett–Teller analysis (BET). In this approach, the condensation of malononitrile and aromatic aldehydes were done in water under reflux conditions to give the corresponding products within 3–60 min in 89%–95% yields. The magnetically recoverable catalyst was recycled and reused about four times without remarkable loss of activity. This method offers various benefits such as mild and eco-friendly reaction conditions, short reaction times, high purity of products, excellent efficiency, use of water as green solvent, and reusability and recoverability of the nanostructure catalyst.
Collapse
Affiliation(s)
- Masumeh Gilanizadeh
- Faculty of Science and Chemistry, Urmia University, Urmia, Iran
- Faculty of Science and Chemistry, Urmia University, Urmia, Iran
| | - Behzad Zeynizadeh
- Faculty of Science and Chemistry, Urmia University, Urmia, Iran
- Faculty of Science and Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
9
|
Khaleghi Abbasabadi M, Azarifar D. β‐Alanine‐functionalized magnetic graphene oxide quantum dots: an efficient and recyclable heterogeneous basic catalyst for the synthesis of 1
H
‐pyrazolo[1,2‐
b
]phthalazine‐5,10‐dione and 2,3‐dihydroquinazolin‐4(1
H
)‐one derivatives. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Trimetallic Nanoparticles: Greener Synthesis and Their Applications. NANOMATERIALS 2020; 10:nano10091784. [PMID: 32916829 PMCID: PMC7559138 DOI: 10.3390/nano10091784] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022]
Abstract
Nanoparticles (NPs) and multifunctional nano-sized materials have significant applications in diverse fields, namely catalysis, sensors, optics, solar energy conversion, cancer therapy/diagnosis, and bioimaging. Trimetallic NPs have found unique catalytic, active food packaging, biomedical, antimicrobial, and sensing applications; they preserve an ever-superior level of catalytic activities and selectivity compared to monometallic and bimetallic nanomaterials. Due to these important applications, a variety of preparation routes, including hydrothermal, microemulsion, selective catalytic reduction, co-precipitation, and microwave-assisted methodologies have been reported for the syntheses of these nanomaterials. As the fabrication of nanomaterials using physicochemical methods often have hazardous and toxic impacts on the environment, there is a vital need to design innovative and well-organized eco-friendly, sustainable, and greener synthetic protocols for their assembly, by applying safer, renewable, and inexpensive materials. In this review, noteworthy recent advancements relating to the applications of trimetallic NPs and nanocomposites comprising these NPs are underscored as well as their eco-friendly and sustainable synthetic preparative options.
Collapse
|