1
|
Wang H, Ma X, Sun L, Bi T, Yang W. Applications of innovative synthetic strategies in anticancer drug discovery: The driving force of new chemical reactions. Bioorg Med Chem Lett 2025; 119:130096. [PMID: 39798856 DOI: 10.1016/j.bmcl.2025.130096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The discovery of novel anticancer agents remains a critical goal in medicinal chemistry, with innovative synthetic methodologies playing a pivotal role in advancing this field. Recent breakthroughs in CH activation reactions, cyclization reactions, multicomponent reactions, cross-coupling reactions, and photo- and electro-catalytic reactions have enabled the efficient synthesis of new molecular scaffolds exhibiting potent biological activities, including anticancer properties. These methodologies have facilitated the functionalization of natural products, the modification of bioactive molecules, and the generation of entirely new compounds, many of which demonstrate strong antitumor activity. This review summarizes the latest synthetic strategies employed over the past five years for discovering anticancer agents, focusing on their influence on drug design. Additionally, the role of new chemical reactions in expanding chemical space and overcoming challenges, such as drug resistance and selectivity, is highlighted, further emphasizing the importance of discovering novel reactions as a key trend in future drug development.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longkang Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tongyu Bi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibo Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
2
|
Chalkappa PKB, Aralihalli S, Sudileti M, Aithal SJ, Praveen BM, Birjadar K. The medicinal panorama of benzimidazoles and their scaffolds as anticancer and antithrombotic agents: A review. Arch Pharm (Weinheim) 2023; 356:e2300206. [PMID: 37440107 DOI: 10.1002/ardp.202300206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
Nitrogen-containing heterocyclic scaffolds have become a prospective pharmacophore with therapeutic importance due to their biological similarities with natural and synthetic drugs. Among all nitrogen heterocyclic compounds, benzimidazoles and their derivatives are privileged molecules structurally akin to naturally available nucleotides, enabling them to intercommunicate with numerous biopolymers in biological systems. This reason enlightens modern researchers worldwide to assess their potential significance in the context of synthetic and biological chemistry. Therefore, it is crucial to merge the latest data with the prior documentation to apprehend the ongoing situation of the benzimidazole moiety in various therapeutic zones of research. The current work displays that the benzimidazole center is a versatile nucleus that offers the necessary data of synthetic alterations for pre-existing compounds to provide new scaffolds to resist numerous therapeutic sectors, including those associated with anticancer and antithrombosis. Due to the potential significance of benzimidazoles, this review aims to emphasize the latest innovations in synthesizing several other notable benzimidazole substrates and their significant pharmacological prospects for the future, including anticancer and antithrombosis.
Collapse
Affiliation(s)
| | - Sudhakara Aralihalli
- Department of Chemistry, RajaRajeswari College of Engineering, Banglore, Karnataka, India
| | - Murali Sudileti
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | | | | | - Kedarnath Birjadar
- Department of Chemistry, Srinivas University, Mangaluru, Karnataka, India
| |
Collapse
|
3
|
Synthesis of Novel 1,3,4-Oxadiazole-Derived α-Aminophosphonates/ α-Aminophosphonic Acids and Evaluation of Their In Vitro Antiviral Activity against the Avian Coronavirus Infectious Bronchitis Virus. Pharmaceutics 2022; 15:pharmaceutics15010114. [PMID: 36678743 PMCID: PMC9867332 DOI: 10.3390/pharmaceutics15010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
An efficient and simple approach has been developed for the synthesis of eight dialkyl/aryl[(5-phenyl-1,3,4-oxadiazol-2-ylamino)(aryl)methyl]phosphonates through the Pudovik-type reaction of dialkyl/arylphosphite with imines, obtained from 5-phenyl-1,3,4-oxadiazol-2-amine and aromatic aldehydes, under microwave irradiation. Five of them were hydrolyzed to lead to the corresponding phosphonic acids. Selected synthesized compounds were screened for their in vitro antiviral activity against the avian bronchitis virus (IBV). In the MTT cytotoxicity assay, the dose-response curve showed that all test compounds were safe in the range concentration of 540-1599 µM. The direct contact of novel synthesized compounds with IBV showed that the diethyl[(5-phenyl-1,3,4-oxadiazol-2-ylamino)(4-trifluoromethoxyphenyl)methyl]phosphonate (5f) (at 33 µM) and the [(5-phenyl-1,3,4-oxadiazol-2-ylamino)(4-trifluoromethylphenyl)methyl] phosphonic acid (6a) (at 1.23 µM) strongly inhibited the IBV infectivity, indicating their high virucidal activity. However, virus titers from IBV-infected Vero cells remained unchanged in response to treatment with the lowest non-cytotoxic concentrations of synthesized compounds suggesting their incapacity to inhibit the virus replication inside the host cell. Lack of antiviral activity might presumably be ascribed to their polarity that hampers their diffusion across the lipophilic cytoplasmic membrane. Therefore, the interactions of 5f and 6a were analyzed against the main coronavirus protease, papain-like protease, and nucleocapsid protein by molecular docking methods. Nevertheless, the novel 1,3,4-oxadiazole-based α-aminophosphonic acids and α-amino-phosphonates hold potential for developing new hygienic virucidal products for domestic, chemical, and medical uses.
Collapse
|
4
|
Yadav O, Kumar M, Mittal H, Yadav K, Seidel V, Ansari A. Theoretical exploration on structures, bonding aspects and molecular docking of α-aminophosphonate ligated copper complexes against SARS-CoV-2 proteases. Front Pharmacol 2022; 13:982484. [PMID: 36263127 PMCID: PMC9575937 DOI: 10.3389/fphar.2022.982484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Recent years have witnessed a growing interest in the biological activity of metal complexes of α-aminophosphonates. Here for the first time, a detailed DFT study on five α-aminophosphonate ligated mononuclear/dinuclear CuII complexes is reported using the dispersion corrected density functional (B3LYP-D2) method. The electronic structures spin densities, FMO analysis, energetic description of spin states, and theoretical reactivity behaviour using molecular electrostatic potential (MEP) maps of all five species are reported. All possible spin states of the dinuclear species were computed and their ground state S values were determined along with the computation of their magnetic coupling constants. NBO analysis was also performed to provide details on stabilization energies. A molecular docking study was performed for the five complexes against two SARS-CoV-2 coronavirus protein targets (PDB ID: 6LU7 and 7T9K). The docking results indicated that the mononuclear species had a higher binding affinity for the targets compared to the dinuclear species. Among the species investigated, species I showed the highest binding affinity with the SARS-CoV-2 Omicron protease. NPA charge analysis showed that the heteroatoms of model species III had a more nucleophilic nature. A comparative study was performed to observe any variations and/or correlations in properties among all species.
Collapse
Affiliation(s)
- Oval Yadav
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| | - Manjeet Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| | - Himanshi Mittal
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| | - Kiran Yadav
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
5
|
Mostafa MA. Synthesis, anticancer evaluation and molecular docking study of novel 4‐hydroxybenzo[
h
][1,6]naphthyridine‐2,5‐dione derivatives. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mai A. Mostafa
- Department of Chemistry, Faculty of Education Ain Shams University Roxy 11711 Cairo Egypt
| |
Collapse
|
6
|
Amira A, Aouf Z, K'tir H, Chemam Y, Ghodbane R, Zerrouki R, Aouf N. Recent Advances in the Synthesis of α‐Aminophosphonates: A Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202101360] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Aϊcha Amira
- Department of Chemistry Applied Organic Chemistry Laboratory, Bioorganic Chemistry Group University of Badji Mokhtar-Annaba, Box 12 23000 Annaba Algeria
- National Higher School of Mining and Metallurgy Amar Laskri Annaba Algeria
| | - Zineb Aouf
- Department of Chemistry Applied Organic Chemistry Laboratory, Bioorganic Chemistry Group University of Badji Mokhtar-Annaba, Box 12 23000 Annaba Algeria
| | - Hacène K'tir
- Department of Chemistry Applied Organic Chemistry Laboratory, Bioorganic Chemistry Group University of Badji Mokhtar-Annaba, Box 12 23000 Annaba Algeria
| | - Yasmine Chemam
- Department of Chemistry Applied Organic Chemistry Laboratory, Bioorganic Chemistry Group University of Badji Mokhtar-Annaba, Box 12 23000 Annaba Algeria
| | - Racha Ghodbane
- Department of Chemistry Applied Organic Chemistry Laboratory, Bioorganic Chemistry Group University of Badji Mokhtar-Annaba, Box 12 23000 Annaba Algeria
| | - Rachida Zerrouki
- University of Limoges PEIRENE Laboratory SylvaLim Group 123 Avenue Albert Thomas Limoges cedex 87060 Limoges France
| | - Nour‐Eddine Aouf
- Department of Chemistry Applied Organic Chemistry Laboratory, Bioorganic Chemistry Group University of Badji Mokhtar-Annaba, Box 12 23000 Annaba Algeria
| |
Collapse
|
7
|
Varga PR, Keglevich G. Synthesis of α-Aminophosphonates and Related Derivatives; the Last Decade of the Kabachnik-Fields Reaction. Molecules 2021; 26:2511. [PMID: 33923090 PMCID: PMC8123346 DOI: 10.3390/molecules26092511] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/07/2021] [Accepted: 04/17/2021] [Indexed: 11/21/2022] Open
Abstract
The Kabachnik-Fields reaction, comprising the condensation of an amine, oxo compound and a P-reagent (generally a >P(O)H species or trialkyl phosphite), still attracts interest due to the challenging synthetic procedures and the potential biological activity of the resulting α-aminophosphonic derivatives. Following the success of the first part (Molecules 2012, 17, 12821), here we summarize the synthetic developments in this field accumulated in the last decade. The procedures compiled include catalytic accomplishments as well as catalyst-free and/or solvent-free "greener" protocols. The products embrace α-aminophosphonates, α-aminophosphinates, and α-aminophosphine oxides along with different bis derivatives from the double phospha-Mannich approach. The newer developments of the aza-Pudovik reactions are also included.
Collapse
Affiliation(s)
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary;
| |
Collapse
|