1
|
Abronina PI, Novikov DS, Malysheva NN, Zinin AI, Chizhov AO, Kononov LO. Stereocontrolled 1,2-trans-arabinofuranosylation in the absence of 2-O-acyl group in glycosyl donor. Carbohydr Res 2024; 544:109252. [PMID: 39217847 DOI: 10.1016/j.carres.2024.109252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Stereocontrolled 1,2-trans-α-arabinofuranosylation using polysilylated mono- and disaccharide glycosyl donors was investigated. A complete α-stereoselectivity of 1,2-trans-arabinofuranosylation was found for Ara-β-(1 → 2)-Ara disaccharide glycosyl donors containing five triisopropylsilyl (TIPS) groups with arylthiol (1) (as shown in our previous publications) or N-phenyltrifluoroacetimidoyl (2) (this work) leaving groups. Conversely, in case of monosaccharide thioglycosides polysilylated with acyclic silyl groups (TIPS, TBDPS), stereoselectivity of glycosylation was lower (α:β = 7-8:1), although the desired α-isomer still dominated. Disaccharide glycosyl donor 2 was successfully used in the synthesis of linear α-(1 → 5)-, β-(1 → 2)-linked hexaarabinofuranoside useful for further preparation of conjugates thereof as antigens valuable for the diagnosis of mycobacterioses.
Collapse
Affiliation(s)
- Polina I Abronina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation.
| | - Dmitry S Novikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Nelly N Malysheva
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Alexander I Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation.
| |
Collapse
|
2
|
Abronina PI, Malysheva NN, Zinin AI, Novikov DS, Panova MV, Kononov LO. Unusual triflic acid-promoted oligomerization of arabinofuranosides during glycosylation. Carbohydr Res 2024; 540:109141. [PMID: 38740000 DOI: 10.1016/j.carres.2024.109141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
We discovered an unusual triflic acid-promoted oligomerization of arabinofuranosides during glycosylation of the primary hydroxy group of α-(1 → 5)-linked tetraarabinofuranoside bearing 4-(2-chloroethoxy)phenyl aglycone with α-(1 → 5), β-(1 → 2)-linked tetraarabinofuranoside containing N-phenyltrifluoroacetimidoyl leaving group, which led to octa-, dodeca- and hexadecaarabinofuranosides. The possible mechanism of triflic acid-promoted oligomerization was proposed. The choice of promoter was found to be a critical factor for the discovered oligomerization of arabinofuranosides. The obtained octa-, dodeca- and hexadecaarabinofuranosides may serve as useful blocks in the synthesis of oligosaccharide fragments of polysaccharides of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Polina I Abronina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation.
| | - Nelly N Malysheva
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation
| | - Alexander I Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation
| | - Dmitry S Novikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation
| | - Maria V Panova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
3
|
Rohokale R, Guo Z. Development in the Concept of Bacterial Polysaccharide Repeating Unit-Based Antibacterial Conjugate Vaccines. ACS Infect Dis 2023; 9:178-212. [PMID: 36706246 PMCID: PMC9930202 DOI: 10.1021/acsinfecdis.2c00559] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of cells is coated with a dense layer of glycans, known as the cell glycocalyx. The complex glycans in the glycocalyx are involved in various biological events, such as bacterial pathogenesis, protection of bacteria from environmental stresses, etc. Polysaccharides on the bacterial cell surface are highly conserved and accessible molecules, and thus they are excellent immunological targets. Consequently, bacterial polysaccharides and their repeating units have been extensively studied as antigens for the development of antibacterial vaccines. This Review surveys the recent developments in the synthetic and immunological investigations of bacterial polysaccharide repeating unit-based conjugate vaccines against several human pathogenic bacteria. The major challenges associated with the development of functional carbohydrate-based antibacterial conjugate vaccines are also considered.
Collapse
Affiliation(s)
- Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| |
Collapse
|
4
|
Synthesis of selectively protected α-(1→3)- and α-(1→5)-linked octasaccharide moiety bearing a Janus aglycone, related to the branching site of mycobacterial polysaccharides. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
5
|
Abronina PI, Podvalnyy NM, Kononov LO. The use of silyl groups in the synthesis of arabinofuranosides. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3371-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Burygin GL, Abronina PI, Podvalnyy NM, Staroverov SA, Kononov LO, Dykman LA. Preparation and in vivo evaluation of glyco-gold nanoparticles carrying synthetic mycobacterial hexaarabinofuranoside. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:480-493. [PMID: 32274287 PMCID: PMC7113550 DOI: 10.3762/bjnano.11.39] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/20/2020] [Indexed: 05/07/2023]
Abstract
A number of bacterial glycans are specific markers for the detection and the serological identification of microorganisms and are also widely used as antigenic components of vaccines. The use of gold nanoparticles as carriers for glyco-epitopes is becoming an important alternative to the traditional conjugation with proteins and synthetic polymers. In this study, we aimed to prepare and evaluate in vivo glyco-gold nanoparticles (glyco-GNPs) bearing the terminal-branched hexaarabinofuranoside fragment (Ara6) of arabinan domains of lipoarabinomannan and arabinogalactan, which are principal polysaccharides of the cell wall of Mycobacterium tuberculosis, the causative agent of tuberculosis. In particular, we were interested whether the antibodies generated against Ara6-GNPs would recognize the natural saccharides on the cell surface of different mycobacterial strains. Two synthetic Ara6 glycosides with amino-functionalized spacer aglycons differing in length and hydrophilicity were directly conjugated with spherical gold nanoparticles (d = 15 nm) to give two sets of glyco-GNPs, which were used for the immunization of rabbits. Dot assays revealed cross-reactions between the two obtained antisera with the hexaarabinofuranoside and the 2-aminoethyl aglycon used for the preparation of glyco-GNPs. Both antisera contained high titers of antibodies specific for Mycobacteria as shown by enzyme-linked immunosorbent assay using M. bovis and M. smegmatis cells as antigens while there was only a weak response to M. phlei cells and no interaction with E. coli cells. The results obtained suggest that glyco-GNPs are promising agents for the generation of anti-mycobacterial antibodies.
Collapse
Affiliation(s)
- Gennady L Burygin
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia
- Department of Horticulture, Breeding, and Genetics, Vavilov Saratov State Agrarian University, Teatralnaya Ploshchad 1, Saratov, 410012, Russia
| | - Polina I Abronina
- Laboratory of Carbohydrate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Nikita M Podvalnyy
- Laboratory of Carbohydrate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Sergey A Staroverov
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia
| | - Leonid O Kononov
- Laboratory of Carbohydrate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudnyi, Moscow Region, 141701, Russia
| | - Lev A Dykman
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia
| |
Collapse
|
7
|
Liu K, Wang L, Guo Z. An extensive review of studies on mycobacterium cell wall polysaccharide-related oligosaccharides – part III: synthetic studies and biological applications of arabinofuranosyl oligosaccharides and their analogs, derivatives and conjugates. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1630841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji′nan, Shandong, China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji′nan, Shandong, China
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Panova MV, Podvalnyy NM, Okun EL, Abronina PI, Chizhov AO, Kononov LO. Arabinofuranose 1,2,5-orthobenzoate as a single precursor of linear α(1 → 5)-linked oligoarabinofuranosides. Carbohydr Res 2017; 456:35-44. [PMID: 29272780 DOI: 10.1016/j.carres.2017.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 01/21/2023]
Abstract
Selectively protected mono-, di- and trisaccharide thioglycoside building blocks with unprotected primary hydroxy group at the non-reducing end, available in only one step from 3-O-benzoyl β-d-arabinofuranose 1,2,5-orthobenzoate, were used in the synthesis of linear α(1 → 5)-linked oligoarabinofuranosides up to octasaccharide. The obtained oligosaccharides contain 4-(2-chloroethoxy)phenyl (CEP) or 4-(2-azidoethoxy)phenyl (AEP) pre-spacer aglycons that allow preparation of neoglycoconjugates.
Collapse
Affiliation(s)
- Maria V Panova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991 Moscow, Russian Federation; The Higher Chemical College of the Russian Academy of Sciences, Miusskaya Pl. 9, 125047 Moscow, Russian Federation
| | - Nikita M Podvalnyy
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991 Moscow, Russian Federation
| | - Eugene L Okun
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991 Moscow, Russian Federation
| | - Polina I Abronina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991 Moscow, Russian Federation
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991 Moscow, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
9
|
Wang L, Feng S, Wang S, Li H, Guo Z, Gu G. Synthesis and Immunological Comparison of Differently Linked Lipoarabinomannan Oligosaccharide–Monophosphoryl Lipid A Conjugates as Antituberculosis Vaccines. J Org Chem 2017; 82:12085-12096. [DOI: 10.1021/acs.joc.7b01817] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lizhen Wang
- National
Glycoengineering Research Center and Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan 250100, China
| | - Shaojie Feng
- National
Glycoengineering Research Center and Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan 250100, China
| | - Subo Wang
- National
Glycoengineering Research Center and Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan 250100, China
| | - Hui Li
- National
Glycoengineering Research Center and Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan 250100, China
| | - Zhongwu Guo
- Department
of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Guofeng Gu
- National
Glycoengineering Research Center and Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan 250100, China
| |
Collapse
|
10
|
Synthesis of hexasaccharide fragment of lipoarabonomannan from Mycobacteria: advantages of the benzyl-free approach. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-0992-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Wang L, Feng S, An L, Gu G, Guo Z. Synthetic and Immunological Studies of Mycobacterial Lipoarabinomannan Oligosaccharides and Their Protein Conjugates. J Org Chem 2015; 80:10060-75. [DOI: 10.1021/acs.joc.5b01686] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lizhen Wang
- National Glycoengineering
Research Center, School of Life Science, Shandong University, Jinan 250100, China
| | - Shaojie Feng
- National Glycoengineering
Research Center, School of Life Science, Shandong University, Jinan 250100, China
| | - Lian An
- National Glycoengineering
Research Center, School of Life Science, Shandong University, Jinan 250100, China
| | - Guofeng Gu
- National Glycoengineering
Research Center, School of Life Science, Shandong University, Jinan 250100, China
| | - Zhongwu Guo
- National Glycoengineering
Research Center, School of Life Science, Shandong University, Jinan 250100, China
| |
Collapse
|
12
|
Abronina PI, Zinin AI, Orlova AV, Sedinkin SL, Kononov LO. An easy access to asymmetrically substituted oligoethylene glycols from 18-crown-6. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.06.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Fedina KG, Abronina PI, Podvalnyy NM, Kondakov NN, Chizhov AO, Torgov VI, Kononov LO. Synthesis of branched arabinofuranose pentasaccharide fragment of mycobacterial arabinans as 2-azidoethyl glycoside. Carbohydr Res 2012; 357:62-7. [DOI: 10.1016/j.carres.2012.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 01/09/2023]
|