1
|
Ding Y, Lambden E, Peate J, Picken LJ, Rees TW, Perez-Ortiz G, Newgas SA, Spicer LAR, Hicks T, Hess J, Ulmschneider MB, Müller MM, Barry SM. Rapid Peptide Cyclization Inspired by the Modular Logic of Nonribosomal Peptide Synthetases. J Am Chem Soc 2024; 146:16787-16801. [PMID: 38842580 PMCID: PMC11191687 DOI: 10.1021/jacs.4c04711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Nonribosomal cyclic peptides (NRcPs) are structurally complex natural products and a vital pool of therapeutics, particularly antibiotics. Their structural diversity arises from the ability of the multidomain enzyme assembly lines, nonribosomal peptide synthetases (NRPSs), to utilize bespoke nonproteinogenic amino acids, modify the linear peptide during elongation, and catalyze an array of cyclization modes, e.g., head to tail, side chain to tail. The study and drug development of NRcPs are often limited by a lack of easy synthetic access to NRcPs and their analogues, with selective macrolactamization being a major bottleneck. Herein, we report a generally applicable chemical macrocyclization method of unprecedented speed and selectivity. Inspired by biosynthetic cyclization, it combines the deprotected linear biosynthetic precursor peptide sequence with a highly reactive C-terminus to produce NRcPs and analogues in minutes. The method was applied to several NRcPs of varying sequences, ring sizes, and cyclization modes including rufomycin, colistin, and gramicidin S with comparable success. We thus demonstrate that the linear order of modules in NRPS enzymes that determines peptide sequence encodes the key structural information to produce peptides conformationally biased toward macrocyclization. To fully exploit this conformational bias synthetically, a highly reactive C-terminal acyl azide is also required, alongside carefully balanced pH and solvent conditions. This allows for consistent, facile cyclization of exceptional speed, selectivity, and atom efficiency. This exciting macrolactamization method represents a new enabling technology for the biosynthetic study of NRcPs and their development as therapeutics.
Collapse
Affiliation(s)
- Yaoyu Ding
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Edward Lambden
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Jessica Peate
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Lewis J. Picken
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Thomas W. Rees
- The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K.
| | - Gustavo Perez-Ortiz
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Sophie A. Newgas
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Lucy A. R. Spicer
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Thomas Hicks
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Jeannine Hess
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
- The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K.
| | - Martin B. Ulmschneider
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Manuel M. Müller
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Sarah M. Barry
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| |
Collapse
|
2
|
Kumar LR, Thimmalapura V, Panduranga V, Mahesh M, Ramana PV, Sureshbabu VV. Copper catalyzed aryl amidation between Nα-Fmoc-protected amino-acid azides and aryl boronic acids. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1704008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- L. Roopesh Kumar
- Peptide Research Laboratory, Department of Studies in Chemistry, Bangalore University, Central College Campus, Bangalore, India
| | - Vishwanatha Thimmalapura
- Peptide Research Laboratory, Department of Studies in Chemistry, Bangalore University, Central College Campus, Bangalore, India
| | - Veladi Panduranga
- Peptide Research Laboratory, Department of Studies in Chemistry, Bangalore University, Central College Campus, Bangalore, India
| | - Mandipogula Mahesh
- Department of Chemistry, Sri Krishnadevaraya University, Anantapur, India
| | - P. Venkata Ramana
- Department of Chemistry, Sri Krishnadevaraya University, Anantapur, India
| | - Vommina V. Sureshbabu
- Peptide Research Laboratory, Department of Studies in Chemistry, Bangalore University, Central College Campus, Bangalore, India
| |
Collapse
|