1
|
Mareev S, Gorobchenko A, Ivanov D, Anokhin D, Nikonenko V. Ion and Water Transport in Ion-Exchange Membranes for Power Generation Systems: Guidelines for Modeling. Int J Mol Sci 2022; 24:34. [PMID: 36613476 PMCID: PMC9820504 DOI: 10.3390/ijms24010034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Artificial ion-exchange and other charged membranes, such as biomembranes, are self-organizing nanomaterials built from macromolecules. The interactions of fragments of macromolecules results in phase separation and the formation of ion-conducting channels. The properties conditioned by the structure of charged membranes determine their application in separation processes (water treatment, electrolyte concentration, food industry and others), energy (reverse electrodialysis, fuel cells and others), and chlore-alkali production and others. The purpose of this review is to provide guidelines for modeling the transport of ions and water in charged membranes, as well as to describe the latest advances in this field with a focus on power generation systems. We briefly describe the main structural elements of charged membranes which determine their ion and water transport characteristics. The main governing equations and the most commonly used theories and assumptions are presented and analyzed. The known models are classified and then described based on the information about the equations and the assumptions they are based on. Most attention is paid to the models which have the greatest impact and are most frequently used in the literature. Among them, we focus on recent models developed for proton-exchange membranes used in fuel cells and for membranes applied in reverse electrodialysis.
Collapse
Affiliation(s)
- Semyon Mareev
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Andrey Gorobchenko
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dimitri Ivanov
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
- Institut de Sciences des Matériaux de Mulhouse-IS2M, CNRS UMR 7361, Jean Starcky, 15, F-68057 Mulhouse, France
- Center for Genetics and Life Science, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | - Denis Anokhin
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Institute of Chemical Physics Problems of RAS, Acad. Semenov Av., 1, 142432 Chernogolovka, Russia
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
2
|
Chen X, Li J, Zhong Y, Li X, Pan M, Qi H, Dong H, Zhang L. Highly Efficient and Stable CdZnSeS/ZnSeS Quantum Dots for Application in White Light-Emitting Diode. Front Chem 2022; 10:845206. [PMID: 35345537 PMCID: PMC8957214 DOI: 10.3389/fchem.2022.845206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Semiconductor quantum dots (QDs) are a promising luminescent phosphor for next-generation lightings and displays. In particular, QD-based white light-emitting diodes (WLEDs) are considered to be the candidate light sources with the most potential for application in displays. In this work, we synthesized quaternary/ternary core/shell alloyed CdZnSeS/ZnSeS QDs with high bright emission intensity. The QDs show good thermal stability by performing high temperature-dependent experiments that range from 295 to 433 K. Finally, the WLED based on the CdZnSeS/ZnSeS QDs exhibits a luminous efficiency (LE) of 28.14 lm/W, an external quantum efficiency (EQE) of 14.86%, and a warm bright sunlight close to the spectrum of daylight (Commission Internationale de l'éclairage (CIE) coordinates 0.305, 0.371). Moreover, the photoluminescence (PL) intensity, LE, EQE, and correlated color temperature (CCT) of as-prepared QD WLED remained relatively stable with only slight changes in the luminescence stability experiment.
Collapse
Affiliation(s)
- Xi Chen
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingzhou Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou, China
- *Correspondence: Jingzhou Li, ; Mingzhong Pan, ; Hongxing Qi,
| | - Yichi Zhong
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou, China
| | - Xin Li
- University of Chinese Academy of Sciences, Beijing, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou, China
| | - Mingzhong Pan
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou, China
- *Correspondence: Jingzhou Li, ; Mingzhong Pan, ; Hongxing Qi,
| | - Hongxing Qi
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou, China
- *Correspondence: Jingzhou Li, ; Mingzhong Pan, ; Hongxing Qi,
| | - Hongxing Dong
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou, China
- Shanghai Institute of Optics and Fine Mechanic, Chinese Academy of Sciences, Shanghai, China
| | - Long Zhang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou, China
- Shanghai Institute of Optics and Fine Mechanic, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
3
|
Zvaigzne M, Domanina I, Il’gach D, Yakimansky A, Nabiev I, Samokhvalov P. Quantum Dot-Polyfluorene Composites for White-Light-Emitting Quantum Dot-Based LEDs. NANOMATERIALS 2020; 10:nano10122487. [PMID: 33322281 PMCID: PMC7764205 DOI: 10.3390/nano10122487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 01/31/2023]
Abstract
Colloidal quantum dots (QDs) are a promising luminescent material for the development of next generation hybrid light-emitting diodes (QDLEDs). In particular, QDs are of great interest in terms of the development of solid-state light sources with an emission spectrum that mimics daylight. In this study, we used CdSe(core)/ZnS/CdS/ZnS(shell) QDs with organic ligands mimicking polyfluorene and its modified derivatives to obtain QD–polymer composites emitting white light. We found that the emission of the composites obtained by spin-coating, being strongly dependent on the chemical structure of the polymer matrix and the QD-to-polymer mass ratio, can be accurately controlled and adjusted to bring its emission spectrum close to the spectrum of daylight (CIE coordinates: 1931 0.307; 0.376). Moreover, the light emission of these composites has been found to be temporally stable, which is due to the minimal structural instability and volume-uniform charge and energy transfer properties. Thus, the use of the synthesized polyfluorene-based organic ligands with controllable chemical structures adaptable to the structure of the polymer matrix can significantly increase the stability of white light emission from QD composites, which can be considered promising electroluminescent materials for fabrication of white QDLEDs.
Collapse
Affiliation(s)
- Mariya Zvaigzne
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia; (I.D.); (I.N.)
- Correspondence: (M.Z.); (P.S.)
| | - Irina Domanina
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia; (I.D.); (I.N.)
| | - Dmitriy Il’gach
- Laboratory of Polymer Nanomaterials and Compositions for Optical Media, Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia; (D.I.); (A.Y.)
| | - Alexander Yakimansky
- Laboratory of Polymer Nanomaterials and Compositions for Optical Media, Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia; (D.I.); (A.Y.)
| | - Igor Nabiev
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia; (I.D.); (I.N.)
- Laboratoire de Recherche en Nanosciences (LRN-EA4682), Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Pavel Samokhvalov
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia; (I.D.); (I.N.)
- Correspondence: (M.Z.); (P.S.)
| |
Collapse
|
4
|
Yang Y, Liu W, Cao J, Wu Y. On-site, rapid and visual determination of Hg2+ and Cu2+ in red wine by ratiometric fluorescence sensor of metal-organic frameworks and CdTe QDs. Food Chem 2020; 328:127119. [DOI: 10.1016/j.foodchem.2020.127119] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022]
|
5
|
Sokolov PM, Zvaigzne MA, Krivenkov VA, Litvin AP, Baranov AV, Fedorov AV, Samokhvalov PS, Nabiev IR. Graphene–quantum dot hybrid nanostructures with controlled optical and photoelectric properties for solar cell applications. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4859] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Isaeva AA, Smagin VP, Zyablitskaya VA. The Reaction between Cadmium Trifluoroacetate and Thioacetamide in Low-Polar Organic Media. RUSS J INORG CHEM+ 2019. [DOI: 10.1134/s003602361901011x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
|
8
|
Galyametdinov YG, Sagdeev DO, Voronkova VK, Sukhanov AA, Shamilov RR. Paramagnetic Mn:CdS/ZnS quantum dots: synthesis, luminescence, and magnetic properties. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2055-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Lesnichaya MV, Shendrik RY, Sapozhnikov AN, Sukhov BG, Trofimov BA. Synthesis and luminescent properties of water-soluble nanobiocomposite CdSe/polysaccharide quantum dots. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-2023-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|