Volkov VI, Yarmolenko OV, Chernyak AV, Slesarenko NA, Avilova IA, Baymuratova GR, Yudina AV. Polymer Electrolytes for Lithium-Ion Batteries Studied by NMR Techniques.
MEMBRANES 2022;
12:membranes12040416. [PMID:
35448386 PMCID:
PMC9028971 DOI:
10.3390/membranes12040416]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
This review is devoted to different types of novel polymer electrolytes for lithium power sources developed during the last decade. In the first part, the compositions and conductivity of various polymer electrolytes are considered. The second part contains NMR applications to the ion transport mechanism. Polymer electrolytes prevail over liquid electrolytes because of their exploitation safety and wider working temperature ranges. The gel electrolytes are mainly attractive. The systems based on polyethylene oxide, poly(vinylidene fluoride-co-hexafluoropropylene), poly(ethylene glycol) diacrylate, etc., modified by nanoparticle (TiO2, SiO2, etc.) additives and ionic liquids are considered in detail. NMR techniques such as high-resolution NMR, solid-state NMR, magic angle spinning (MAS) NMR, NMR relaxation, and pulsed-field gradient NMR applications are discussed. 1H, 7Li, and 19F NMR methods applied to polymer electrolytes are considered. Primary attention is given to the revelation of the ion transport mechanism. A nanochannel structure, compositions of ion complexes, and mobilities of cations and anions studied by NMR, quantum-chemical, and ionic conductivity methods are discussed.
Collapse