1
|
Kuang F, Hui T, Chen Y, Qiu M, Gao X. Post-Graphene 2D Materials: Structures, Properties, and Cancer Therapy Applications. Adv Healthc Mater 2024; 13:e2302604. [PMID: 37955406 DOI: 10.1002/adhm.202302604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Indexed: 11/14/2023]
Abstract
Cancer is one of the most serious diseases challenging human health and life span. Cancer has claimed millions of lives worldwide. Early diagnosis and effective treatment of cancer are very important for the survival of patients. In recent years, 2D nanomaterials have shown great potential in the development of anticancer treatment by combining their inherent physicochemical properties after surface modification. 2D nanomaterials have attracted great interest due to their unique nanosheet structure, large surface area, and extraordinary physicochemical properties. This article reviews the advantages and application status of emerging 2D nanomaterials for targeted tumor synergistic therapy compared with traditional therapeutic strategies. In order to investigate novel potential anticancer strategies, this paper focuses on the surface modification, cargo delivery capability, and unique optical properties of emerging 2D nanomaterials. Finally, the current problems and challenges in cancer treatment are summarized and prospected.
Collapse
Affiliation(s)
- Fei Kuang
- College of Life Sciences, Qingdao University, No.308 Ningxia Road, Qingdao, Shandong, 266071, China
| | - Tiankun Hui
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China
| | - Yingjie Chen
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China
| | - Xiang Gao
- College of Life Sciences, Qingdao University, No.308 Ningxia Road, Qingdao, Shandong, 266071, China
| |
Collapse
|
2
|
de Morais FAP, Balbinot RB, Bakoshi ABK, Lazarin-Bidoia D, da Silva Souza Campanholi K, da Silva Junior RC, Gonçalves RS, Ueda-Nakamura T, de Oliveira Silva S, Caetano W, Nakamura CV. Advanced theranostic nanoplatforms for hypericin delivery in the cancer treatment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 247:112782. [PMID: 37660488 DOI: 10.1016/j.jphotobiol.2023.112782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Biomodified coated-lipid vesicles were obtained using the DPPC lipid (L) and F127 copolymer linked covalently with spermine (SN), biotin (BT), and folic acid (FA), resulting in LF127-SN, LF127-BT, and LF127-FA nanoplatforms. The photosensitizer hypericin (HY) was incorporated into the nanosystem by a thin-film method and characterized by dynamic light scattering, zeta potential, encapsulation efficiency, and transmission electronic microscopy. The results provided a good level of stability for all nanoplatforms for at least 5 days as an aqueous dispersion. The in vitro serum stability showed that the HY-loaded LF127-SN has a lower tendency to form complexes with BSA protein than with its analogs. LF127-SN was the most stable HY formulation, followed by LF127-BT and LF127-FA, confirmed by the association constant (Kd) values: 600 μmol L-1, 1100 μmol L-1, 515 μmol L-1, and 378 μmol L-1 for LF127, LF127 FA, LF127-BT, and LF127-SN, respectively. The photodynamic potential of HY was accessed by cytotoxicity assays using Caco-2, B16-F10, L-929, and HaCat cells. HY-loaded LF127-SN revealed a significant increase in the selectivity compared to other nanoplatforms. HY-loaded in LF127-BT and LF127-SN showed distinct uptake and biodistribution after 2 h of intravenous application. All biomodified coated-lipids showed satisfactory metabolism within 72 h after application, without significant accumulation or residue in any vital organ. These results suggest that incorporating HY-loaded in these nanosystems may be a promising strategy for future applications, even with a small amount of binders to the coating copolymer (0.02% w/v). Furthermore, these results indicate that the LF127-SN showed remarkable superiority compared to other evaluated systems, being the most distinct for future photodynamic therapy and theranostic applications.
Collapse
Affiliation(s)
- Flávia Amanda Pedroso de Morais
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil.
| | - Rodolfo Bento Balbinot
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil
| | - Amanda Beatriz Kawano Bakoshi
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil
| | - Danielle Lazarin-Bidoia
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil
| | | | | | - Renato Sonchini Gonçalves
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil.
| | - Tânia Ueda-Nakamura
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil.
| | - Sueli de Oliveira Silva
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil.
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, 87020-900 Maringá, PR, Brazil.
| | - Celso Vataru Nakamura
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
3
|
Lv R, Li G, Lu S, Wang T. Synthesis of Multi-Functional Carbon Quantum Dots for Targeted Antitumor Therapy. J Fluoresc 2021; 31:339-348. [PMID: 33389420 DOI: 10.1007/s10895-020-02661-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/03/2020] [Indexed: 01/23/2023]
Abstract
Carbon dots are nano-sized photoluminescence materials which have good biocompatibility and low cytotoxicity, while the previously synthesized carbon dots lack tumor targeting capability and therapy function so that it cannot achieve the purpose of diagnosis and treatment. Herein, a new kind of multi-functional carbon dots (GFCDs) is promising to be applied in tumor cells imaging and clinical targeted therapy. Gallic acid (GA) was used as the carbon resource and antitumor active molecule, folic acid (FA) was used as the nitrogen resource and tumor targeting molecule, and citric acid monohydrate (CA) was used as the auxiliary carbon source. Multi-functional GACDs were synthesized by a simple one-step microwave-assisted procedure and analyzed with UV - vis spectrophotometer, fourier transform infrared spectrometer, transmission electron microscopy and X-ray photoelectron spectrometer. Results show that the diameter of GFCDs is about 3 nm. And GFCDs are pale-yellow under natural light which turn blue under 360 nm UV lamp. Besides ester bond is the connecting mode between functional molecules. In addition, the results of in vitro cell imaging experiments and in vivo antitumor experiments demonstrate the targeting imaging and antitumor abilities towards Hela cells. The synthesis route and properties of GFCDs.
Collapse
Affiliation(s)
- Rongyao Lv
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Genrong Li
- Chongqing Academy of Metrology and Quality Inspection, Chongqing, 401123, People's Republic of China
| | - Shuting Lu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Ting Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
4
|
Sanasam B, Raza MK, Musib D, Pal M, Pal M, Roy M. Photodynamic Applications of New Imidazo[4,5‐f][1,10]phenanthroline Oxidovanadium(IV) Complexes: Synthesis, Photochemical, and Cytotoxic Evaluation. ChemistrySelect 2020. [DOI: 10.1002/slct.202003334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bandana Sanasam
- Department of Chemistry National Institute of Technology Manipur Langol 795004, Imphal, Manipur India
| | - Md K. Raza
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore Bangalore 560012 India
| | - Dulal Musib
- Department of Chemistry National Institute of Technology Manipur Langol 795004, Imphal, Manipur India
| | - Maynak Pal
- Department of Chemistry National Institute of Technology Manipur Langol 795004, Imphal, Manipur India
| | - Mrityunjoy Pal
- Department of Chemistry National Institute of Technology Manipur Langol 795004, Imphal, Manipur India
| | - Mithun Roy
- Department of Chemistry National Institute of Technology Manipur Langol 795004, Imphal, Manipur India
| |
Collapse
|
5
|
Gierlich P, Mata AI, Donohoe C, Brito RMM, Senge MO, Gomes-da-Silva LC. Ligand-Targeted Delivery of Photosensitizers for Cancer Treatment. Molecules 2020; 25:E5317. [PMID: 33202648 PMCID: PMC7698280 DOI: 10.3390/molecules25225317] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment which involves a photosensitizer (PS), light at a specific wavelength for PS activation and oxygen, which combine to elicit cell death. While the illumination required to activate a PS imparts a certain amount of selectivity to PDT treatments, poor tumor accumulation and cell internalization are still inherent properties of most intravenously administered PSs. As a result, common consequences of PDT include skin photosensitivity. To overcome the mentioned issues, PSs may be tailored to specifically target overexpressed biomarkers of tumors. This active targeting can be achieved by direct conjugation of the PS to a ligand with enhanced affinity for a target overexpressed on cancer cells and/or other cells of the tumor microenvironment. Alternatively, PSs may be incorporated into ligand-targeted nanocarriers, which may also encompass multi-functionalities, including diagnosis and therapy. In this review, we highlight the major advances in active targeting of PSs, either by means of ligand-derived bioconjugates or by exploiting ligand-targeting nanocarriers.
Collapse
Affiliation(s)
- Piotr Gierlich
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Ana I. Mata
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
| | - Claire Donohoe
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Rui M. M. Brito
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- BSIM Therapeutics, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Mathias O. Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Lígia C. Gomes-da-Silva
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
| |
Collapse
|
6
|
Wen Y, Schreiber CL, Smith BD. Dual-Targeted Phototherapeutic Agents as Magic Bullets for Cancer. Bioconjug Chem 2020; 31:474-482. [PMID: 31940166 DOI: 10.1021/acs.bioconjchem.9b00836] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Imagine the ideal cancer drug that only kills cancer cells and does not affect nearby noncancerous cells. In the words of Paul Ehrlich, the drug acts like a magic bullet. This Topical Review summarizes an emerging new strategy to achieve this audacious goal. The central concept is a dual-targeted phototherapeutic agent for photodynamic or photothermal therapy. The dual-targeted phototherapeutic agent promotes cancer cell specificity by leveraging three levels of selectivity. Cell death will only occur in the anatomical location that is illuminated with light (Selectivity Level 1) and in cancer cells within the illumination area that have selectively accumulated the agent (Selectivity Level 2). The cancer cell killing effect is highly localized if the agent accumulates in hypersensitive intracellular organelles (Selectivity Level 3). The common targeting units for cancer cells and organelles are described, along with recent examples of dual-targeted phototherapeutic agents that incorporate these two classes of targeting units.
Collapse
Affiliation(s)
- Ying Wen
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Cynthia L Schreiber
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
7
|
Otvagin VF, Kuzmina NS, Krylova LV, Volovetsky AB, Nyuchev AV, Gavryushin AE, Meshkov IN, Gorbunova YG, Romanenko YV, Koifman OI, Balalaeva IV, Fedorov AY. Water-Soluble Chlorin/Arylaminoquinazoline Conjugate for Photodynamic and Targeted Therapy. J Med Chem 2019; 62:11182-11193. [PMID: 31782925 DOI: 10.1021/acs.jmedchem.9b01294] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new water-soluble conjugate, consisting of a chlorin-e6 photosensitizer part, a 4-arylaminoquinazoline moiety with affinity to epidermal growth factor receptors, and a hydrophilic β-d-maltose fragment, was synthesized starting from methylpheophorbide-a in seven steps. The prepared conjugate exhibited low levels of dark cytotoxicity and pronounced photoinduced cytotoxicity at submicromolar concentrations in vitro, with an IC50(dark)/IC50(light) ratio of ∼368 and a singlet oxygen quantum yield of about 20%. In tumor-bearing Balb/c nude mice, conjugate 1 preferentially accumulates in the tumor tissue. Irradiation of the nude mice bearing A431 xenograft tumors after intravenous administration of the prepared conjugate with a relatively low light dose (50 J/cm2) produced an excellent therapeutic effect with profound tumor regression and low systemic toxicity.
Collapse
Affiliation(s)
- Vasilii F Otvagin
- Lobachevsky State University of Nizhny Novgorod , Gagarina Avenue 23 , Nizhny Novgorod 603950 , Russia
| | - Natalia S Kuzmina
- Lobachevsky State University of Nizhny Novgorod , Gagarina Avenue 23 , Nizhny Novgorod 603950 , Russia
| | - Lubov V Krylova
- Lobachevsky State University of Nizhny Novgorod , Gagarina Avenue 23 , Nizhny Novgorod 603950 , Russia
| | - Arthur B Volovetsky
- Lobachevsky State University of Nizhny Novgorod , Gagarina Avenue 23 , Nizhny Novgorod 603950 , Russia
| | - Alexander V Nyuchev
- Lobachevsky State University of Nizhny Novgorod , Gagarina Avenue 23 , Nizhny Novgorod 603950 , Russia
| | | | - Ivan N Meshkov
- Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Leninsky pr. 31-4 , Moscow 119071 , Russia
| | - Yulia G Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Leninsky pr. 31-4 , Moscow 119071 , Russia.,Kurnakov Institute of General and Inorganic Chemistry , Russian Academy of Sciences , Leninsky pr. 31 , Moscow 119991 , Russia
| | - Yuliya V Romanenko
- Research Institute of Macroheterocycles , Ivanovo State University of Chemical Technology , 153000 Ivanovo , Russia
| | - Oscar I Koifman
- Research Institute of Macroheterocycles , Ivanovo State University of Chemical Technology , 153000 Ivanovo , Russia
| | - Irina V Balalaeva
- Lobachevsky State University of Nizhny Novgorod , Gagarina Avenue 23 , Nizhny Novgorod 603950 , Russia
| | - Alexey Yu Fedorov
- Lobachevsky State University of Nizhny Novgorod , Gagarina Avenue 23 , Nizhny Novgorod 603950 , Russia
| |
Collapse
|
8
|
Zhdanova KA, Ezhov AV, Bragina NA, Mironov AF. Synthesis of new binary porphyrin–cyanine conjugates and their self-aggregation in organic-aqueous media. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Suvorov NV, Machulkin AE, Ivanova AV, Popkov AM, Bondareva EA, Plotnikova EA, Yakubovskaya RI, Majouga AG, Mironov AF, Grin MA. Synthesis of PSMA-targeted 131- and 152-substituted chlorin e6 derivatives and their biological properties. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618501006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prostate cancer is an extremely common cancer among older men. Conventional chemotherapy has proven to be not effective enough in battling it due to its high systemic toxicity and low selectivity. An alternative method of cancer treatment known as photodynamic therapy (PDT) has been shown to be effective. It is not without its faults either: one of the issues it’s been known to have is the insufficient selectivity of photosensitizer accumulation in tumor tissues. Recent studies, however, seem to indicate that introducing a PSMA-targeted moiety into photosensitizer might prove to be a solution to this problem. The present paper is concerned with synthesis of PSMA-targeted 131- and 152-substituted chlorin e6 conjugates and their biological characteristics. Our data suggests that the developed conjugates show potential as targeted agents for photodynamic therapy.
Collapse
Affiliation(s)
- Nikita V. Suvorov
- MIREA — Russian Technological University, Institute of Fine Chemical Technology, 86, Vernadskogo Avenue, Moscow, 119571, Russian Federation
| | - Alexey E. Machulkin
- Lomonosov Moscow State University, 1, Leninskie Gori, Building 3, Moscow, 119991, Russian Federation
| | - Anna V. Ivanova
- MIREA — Russian Technological University, Institute of Fine Chemical Technology, 86, Vernadskogo Avenue, Moscow, 119571, Russian Federation
| | - Alexander M. Popkov
- MIREA — Russian Technological University, Institute of Fine Chemical Technology, 86, Vernadskogo Avenue, Moscow, 119571, Russian Federation
| | - Elizaveta A. Bondareva
- MIREA — Russian Technological University, Institute of Fine Chemical Technology, 86, Vernadskogo Avenue, Moscow, 119571, Russian Federation
| | - Ekaterina A. Plotnikova
- P. A. Herzen Moscow Oncology Research Institute, 3, 2th Botkinsky Driveway, Moscow, 125284, Russian Federation
| | - Raisa I. Yakubovskaya
- P. A. Herzen Moscow Oncology Research Institute, 3, 2th Botkinsky Driveway, Moscow, 125284, Russian Federation
| | - Alexander G. Majouga
- Dmitry Mendeleev University of Chemical Technology of Russia, 9, Miusskaya Square, Moscow, 125047, Russian Federation
- Lomonosov Moscow State University, 1, Leninskie Gori, Building 3, Moscow, 119991, Russian Federation
| | - Andrey F. Mironov
- MIREA — Russian Technological University, Institute of Fine Chemical Technology, 86, Vernadskogo Avenue, Moscow, 119571, Russian Federation
| | - Mikhail A. Grin
- MIREA — Russian Technological University, Institute of Fine Chemical Technology, 86, Vernadskogo Avenue, Moscow, 119571, Russian Federation
| |
Collapse
|