1
|
Poletaeva DA, Soldatova YV, Smolina AV, Savushkin MA, Klimanova EN, Sanina NA, Faingold II. The Influence of Cationic Nitrosyl Iron Complex with Penicillamine Ligands on Model Membranes, Membrane-Bound Enzymes and Lipid Peroxidation. MEMBRANES 2022; 12:membranes12111088. [PMID: 36363643 PMCID: PMC9694463 DOI: 10.3390/membranes12111088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 06/01/2023]
Abstract
This paper shows the biological effects of cationic binuclear tetranitrosyl iron complex with penicillamine ligands (TNIC-PA). Interaction with a model membrane was assessed using a fluorescent probes technique. Antioxidant activity was studied using a thiobarbituric acid reactive species assay (TBARS) and a chemiluminescence assay. The catalytic activity of monoamine oxidase (MAO) was determined by measuring liberation of ammonia. Antiglycation activity was determined fluometrically by thermal glycation of albumine by D-glucose. The higher values of Stern-Volmer constants (KSV) obtained for the pyrene located in hydrophobic regions (3.9 × 104 M-1) compared to KSV obtained for eosin Y located in the polar headgroup region (0.9 × 104 M-1) confirms that TNIC-PA molecules prefer to be located in the hydrophobic acyl chain region, close to the glycerol group of lipid molecules. TNIC-PA effectively inhibited the process of spontaneous lipid peroxidation, due to additive contributions from releasing NO and penicillamine ligand (IC50 = 21.4 µM) and quenched luminol chemiluminescence (IC50 = 3.6 μM). High activity of TNIC-PA in both tests allows us to assume a significant role of its radical-scavenging activity in the realization of antioxidant activity. It was shown that TNIC-PA (50-1000 μM) selectively inhibits the membrane-bound enzyme MAO-A, a major source of ROS in the heart. In addition, TNIC-PA is an effective inhibitor of non-enzymatic protein glycation. Thus, the evaluated biological effects of TNIC-PA open up the possibility of its practical application in chemotherapy for socially significant diseases, especially cardiovascular diseases.
Collapse
Affiliation(s)
- Darya A. Poletaeva
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue, 1142432 Chernogolovka, Russia
| | - Yuliya V. Soldatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue, 1142432 Chernogolovka, Russia
| | - Anastasiya V. Smolina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue, 1142432 Chernogolovka, Russia
| | - Maxim A. Savushkin
- Faculty of Fundamental Physical and Chemical Engineering, Moscow State University, 1142432 Moscow, Russia
| | - Elena N. Klimanova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue, 1142432 Chernogolovka, Russia
| | - Nataliya A. Sanina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue, 1142432 Chernogolovka, Russia
- Medicinal Chemistry Research and Education Center, Moscow Region State University, 1142432 Mytishchy, Russia
| | - Irina I. Faingold
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue, 1142432 Chernogolovka, Russia
| |
Collapse
|
2
|
Sanina NA, Starostina AA, Utenyshev AN, Dorovatovskii PV, Emel’yanova NS, Krapivin VB, Luzhkov VB, Mumyatova VA, Balakina AA, Terentiev AA, Aldoshin SM. Novel Type of Tetranitrosyl Iron Salt: Synthesis, Structure and Antibacterial Activity of Complex [FeL' 2(NO) 2][FeL'L"(NO) 2] with L'-thiobenzamide and L"-thiosulfate. Molecules 2022; 27:6886. [PMID: 36296478 PMCID: PMC9611265 DOI: 10.3390/molecules27206886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
In this work a new donor of nitric oxide (NO) with antibacterial properties, namely nitrosyl iron complex of [Fe(C6H5C-SNH2)2(NO)2][Fe(C6H5C-SNH2)(S2O3)(NO)2] composition (complex I), has been synthesized and studied. Complex I was produced by the reduction of the aqueous solution of [Fe2(S2O3)2(NO)2]2- dianion by the thiosulfate, with the further treatment of the mixture by the acidified alcohol solution of thiobenzamide. Based on the structural study of I (X-ray analysis, quantum chemical calculations by NBO and QTAIM methods in the frame of DFT), the data were obtained on the presence of the NO…NO interactions, which stabilize the DNIC dimer in the solid phase. The conformation properties, electronic structure and free energies of complex I hydration were studied using B3LYP functional and the set of 6-31 + G(d,p) basis functions. The effect of an aquatic surrounding was taken into account in the frame of a polarized continuous model (PCM). The NO-donating activity of complex I was studied by the amperometry method using an "amiNO-700" sensor electrode of the "inNO Nitric Oxide Measuring System". The antibacterial activity of I was studied on gram-negative (Escherichia coli) and gram-positive (Micrococcus luteus) bacteria. Cytotoxicity was studied using Vero cells. Complex I was found to exhibit antibacterial activity comparable to that of antibiotics, and moderate toxicity to Vero cells.
Collapse
Affiliation(s)
- Nataliya A. Sanina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS, 1, Acad. Semenov Av., 142432 Chernogolovka, Russia
- Faculty of Fundamental Physical-Chemical Engineering, M.V. Lomonosov Moscow State University, 1/51 Leninskie Gory, 119991 Moscow, Russia
- Scientific and Educational Center in Chernogolovka, Medical-Biological Institute, Moscow Regional State University, 24, Vera Voloshina Street, 141014 Mytischi, Russia
| | - Arina A. Starostina
- Faculty of Fundamental Physical-Chemical Engineering, M.V. Lomonosov Moscow State University, 1/51 Leninskie Gory, 119991 Moscow, Russia
| | - Andrey N. Utenyshev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS, 1, Acad. Semenov Av., 142432 Chernogolovka, Russia
| | - Pavel V. Dorovatovskii
- National Research Centre “Kurchatov Institute”, 1 Acad. Kurchatov Square, 123182 Moscow, Russia
| | - Nina S. Emel’yanova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS, 1, Acad. Semenov Av., 142432 Chernogolovka, Russia
- Faculty of Fundamental Physical-Chemical Engineering, M.V. Lomonosov Moscow State University, 1/51 Leninskie Gory, 119991 Moscow, Russia
| | - Vladimir B. Krapivin
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS, 1, Acad. Semenov Av., 142432 Chernogolovka, Russia
| | - Victor B. Luzhkov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS, 1, Acad. Semenov Av., 142432 Chernogolovka, Russia
- Faculty of Fundamental Physical-Chemical Engineering, M.V. Lomonosov Moscow State University, 1/51 Leninskie Gory, 119991 Moscow, Russia
| | - Viktoriya A. Mumyatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS, 1, Acad. Semenov Av., 142432 Chernogolovka, Russia
| | - Anastasiya A. Balakina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS, 1, Acad. Semenov Av., 142432 Chernogolovka, Russia
| | - Alexei A. Terentiev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS, 1, Acad. Semenov Av., 142432 Chernogolovka, Russia
- Faculty of Fundamental Physical-Chemical Engineering, M.V. Lomonosov Moscow State University, 1/51 Leninskie Gory, 119991 Moscow, Russia
- Scientific and Educational Center in Chernogolovka, Medical-Biological Institute, Moscow Regional State University, 24, Vera Voloshina Street, 141014 Mytischi, Russia
| | - Sergey M. Aldoshin
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS, 1, Acad. Semenov Av., 142432 Chernogolovka, Russia
- Faculty of Fundamental Physical-Chemical Engineering, M.V. Lomonosov Moscow State University, 1/51 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
3
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
7
|
Neshev NI, Sokolova EM, Kozub GI, Kondrat’eva TA, Sanina NA. Kinetic regularities of NO donation by binuclear dinitrosyl iron complexes with thiolate ligands based on thiophenol derivatives in the presence of red blood cells. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2989-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Sanina NA, Mumyatova VA, Terent´ev AA, Morgunov RB, Ovanesyan NS, Kulikov AV. Synthesis, properties, and antibacterial activity of a new nitric oxide donor — a nitrosyl iron complex with 5-phenyl-1H-1,2,4-triazole-3-thiol. Russ Chem Bull 2020. [DOI: 10.1007/s11172-019-2691-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|