1
|
Budnikov AS, Krylov IB, Lastovko AV, Dolotov RA, Shevchenko MI, Terent'ev AO. The diacetyliminoxyl radical in oxidative functionalization of alkenes. Org Biomol Chem 2023; 21:7758-7766. [PMID: 37698014 DOI: 10.1039/d3ob00925d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The intermolecular oxime radical addition to CC bonds was observed and studied for the first time. The diacetyliminoxyl radical was proposed as a model radical reagent for the study of oxime radical reactivity towards unsaturated substrates, which is important in the light of the active development of synthetic applications of oxime radicals. In the present work it was found that the diacetyliminoxyl radical reacts with vinylarenes and conjugated dienes to give radical addition products, whereas unconjugated alkenes can undergo radical addition or allylic hydrogen substitution by diacetyliminoxyl depending on the substrate structure. Remarkably, substituted alkenes give high yields of C-O coupling products despite the significant steric hindrance, whereas unsubstituted alkenes give lower yields of the C-O coupling products. The observed atypical C-O coupling yield dependence on the alkene structure was explained by the discovered ability of the diacetyliminoxyl radical to attack alkenes with the formation of a C-N bond instead of a C-O bond giving side products. This side process is not expected for sterically hindered alkenes due to lower steric availability of the N-atom in diacetyliminoxyl than that of the O-atom.
Collapse
Affiliation(s)
- Alexander S Budnikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Andrey V Lastovko
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Roman A Dolotov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Mikhail I Shevchenko
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
2
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
3
|
Budnikov AS, Krylov I, Lastovko AV, Yu B, Terent'ev AO. N‐Alkoxyphtalimides as Versatile Alkoxy Radical Precursors in Modern Organic Synthesis. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alexander S. Budnikov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory for Studies of Homolytic Reactions RUSSIAN FEDERATION
| | - Igor Krylov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory for Studies of Homolytic Reactions Leninsky Prospect, 47 119991 Moscow RUSSIAN FEDERATION
| | - Andrey V. Lastovko
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory for Studies of Homolytic Reactions RUSSIAN FEDERATION
| | - Bing Yu
- Zhengzhou University Green Catalysis Center CHINA
| | - Alexander O. Terent'ev
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory for Studies of Homolytic Reactions Leninsky prospekt 47 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
4
|
Tretyakov EV, Ovcharenko VI, Terent'ev AO, Krylov IB, Magdesieva TV, Mazhukin DG, Gritsan NP. Conjugated nitroxide radicals. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5025] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Zheng Y, Yang QY, Wu LY, Zhu XY, Ge MJ, Yang H, Liu SY, Chen F. Oxoammonium Salt-Mediated Regioselective Vicinal Dioxidation of Alkenes: Relying on Transient and Persistent Nitroxides. Org Lett 2021; 23:8533-8538. [PMID: 34699225 DOI: 10.1021/acs.orglett.1c03196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A novel, easy-to-handle, and regioselective vicinal dioxidation of alkenes under transition metal and organic peroxide free conditions has been developed. This approach uses N-hydroxyphthalimide and its analogues as the transient nitroxyl-radical precursors and 2,2,6,6-tetramethylpiperidine-1-oxoammonium tetrafluoroborate (TEMPO+BF4-) as the oxidant as well as the source of persistent nitroxide. By employing this method, multifarious structurally important dioxidation products were efficiently synthesized from simple alkenes and complex bioactive molecule derivatives.
Collapse
Affiliation(s)
- Yang Zheng
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Qing-Yun Yang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Lu-Yan Wu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Xin-Yue Zhu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Ming-Jing Ge
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Hao Yang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Shi-Yu Liu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Fei Chen
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| |
Collapse
|
6
|
Hydroperoxide method for the synthesis of p-tert-butylphenol. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Kuznetsova N, Karmadonova I, Kuznetsova L, Babushkin D. The influence of Fe(III) acetylacetonate and o-phenanthroline towards improvement of NHPI-catalyzed cumene oxidation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Krylov IB, Lopat’eva ER, Subbotina IR, Nikishin GI, Yu B, Terent’ev AO. Mixed hetero-/homogeneous TiO2/N-hydroxyimide photocatalysis in visible-light-induced controllable benzylic oxidation by molecular oxygen. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63831-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Zhang MZ, Tian J, Yuan M, Peng WQ, Wang YZ, Wang P, Liu L, Gou Q, Huang H, Chen T. Visible light-induced aerobic dioxygenation of α,β-unsaturated amides/alkenes toward selective synthesis of β-oxy alcohols using rose bengal as a photosensitizer. Org Chem Front 2021. [DOI: 10.1039/d1qo00149c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The first visible light-induced aerobic dioxygenation of alkenes for the selective synthesis of β-oxy alcohols was developed using non-toxic rose bengal as a photosensitizer.
Collapse
|
10
|
Arp FF, Bhuvanesh N, Blümel J. Di(hydroperoxy)cycloalkane Adducts of Triarylphosphine Oxides: A Comprehensive Study Including Solid-State Structures and Association in Solution. Inorg Chem 2020; 59:13719-13732. [PMID: 32866378 DOI: 10.1021/acs.inorgchem.0c02087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Four new di(hydroperoxy)cycloalkane adducts (Ahn adducts) of p-Tol3PO (1) and o-Tol3PO (2), namely, p-Tol3PO·(HOO)2C(CH2)5 (3), o-Tol3PO·(HOO)2C(CH2)5 (4), p-Tol3PO·(HOO)2C(CH2)6 (5), and o-Tol3PO·(HOO)2C(CH2)6 (6), have been synthesized and fully characterized. Their single crystal X-ray structures have been determined and analyzed. The 31P NMR data are in accordance with hydrogen bonding of the di(hydroperoxy)alkanes to the P═O groups of the phosphine oxides. Due to their high solubility in organic solvents, natural abundance 17O NMR spectra of 1-6 could be recorded, providing the signals for the P═O groups and additionally the two different oxygen nuclei in the O-OH groups in the adducts 3-6. The association and mobility of 3-6 were explored by 1H DOSY (diffusion ordered spectroscopy) NMR, which indicated persistent hydrogen bonding of the adducts in solution. Competition experiments with phosphine oxides allowed ranking of the affinities of the di(hydroperoxy)cycloalkanes for the different phosphine oxide carriers. On the basis of variable temperature 31P NMR investigations, the Gibbs energies of activation ΔG‡ for the adduct dissociation processes of 3-6 at different temperatures, as well as the enthalpy ΔH‡ and entropy ΔS‡ of activation, have been determined. IR spectroscopy of 3-6 corroborated the hydrogen bonding, and in the Raman spectra, the ν(O-O) stretching bands have been identified, confirming the presence of peroxy groups in the solid materials. The high solubilities in selected organic solvents have been quantified.
Collapse
Affiliation(s)
- Fabian F Arp
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Janet Blümel
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| |
Collapse
|