1
|
Oka M, Birn J, Egedal J, Guo F, Ergun RE, Turner DL, Khotyaintsev Y, Hwang KJ, Cohen IJ, Drake JF. Particle Acceleration by Magnetic Reconnection in Geospace. SPACE SCIENCE REVIEWS 2023; 219:75. [PMID: 37969745 PMCID: PMC10630319 DOI: 10.1007/s11214-023-01011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/05/2023] [Indexed: 11/17/2023]
Abstract
Particles are accelerated to very high, non-thermal energies during explosive energy-release phenomena in space, solar, and astrophysical plasma environments. While it has been established that magnetic reconnection plays an important role in the dynamics of Earth's magnetosphere, it remains unclear how magnetic reconnection can further explain particle acceleration to non-thermal energies. Here we review recent progress in our understanding of particle acceleration by magnetic reconnection in Earth's magnetosphere. With improved resolutions, recent spacecraft missions have enabled detailed studies of particle acceleration at various structures such as the diffusion region, separatrix, jets, magnetic islands (flux ropes), and dipolarization front. With the guiding-center approximation of particle motion, many studies have discussed the relative importance of the parallel electric field as well as the Fermi and betatron effects. However, in order to fully understand the particle acceleration mechanism and further compare with particle acceleration in solar and astrophysical plasma environments, there is a need for further investigation of, for example, energy partition and the precise role of turbulence.
Collapse
Affiliation(s)
- Mitsuo Oka
- Space Sciences Laboratory, University of California Berkeley, 7 Gauss Way, Berkeley, 94720 CA USA
| | - Joachim Birn
- Center for Space Plasma Physics, Space Science Institute, 4765 Walnut Street, Boulder, 80301 CO USA
- Los Alamos National Laboratory, Los Alamos, 87545 NM USA
| | - Jan Egedal
- Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, 53706 WI USA
| | - Fan Guo
- Los Alamos National Laboratory, Los Alamos, 87545 NM USA
| | - Robert E. Ergun
- Laboratory for Atmospheric and Space Physics, University of Colorado, 1234 Innovation Drive, Boulder, 80303 CO USA
- Department of Astrophysical and Planetary Sciences, University of Colorado, 2000 Colorado Avenue, Boulder, 80309 CO USA
| | - Drew L. Turner
- The Johns Hopkins Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, 20723 MD USA
| | | | - Kyoung-Joo Hwang
- Southwest Research Institute, 6220 Culebra Road, San Antonio, 78238 TX USA
| | - Ian J. Cohen
- The Johns Hopkins Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, 20723 MD USA
| | - James F. Drake
- Department of Physics, The Institute for Physical Science and Technology and The Joint Space Science Institute, University of Maryland, College Park, 20742 MD USA
| |
Collapse
|
2
|
Rogers AJ, Farrugia CJ, Torbert RB, Rogers TJ. Applying Magnetic Curvature to MMS Data to Identify Thin Current Sheets Relative to Tail Reconnection. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2023; 128:e2022JA030577. [PMID: 37035416 PMCID: PMC10078146 DOI: 10.1029/2022ja030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 06/19/2023]
Abstract
Thin current sheets (TCSs) have been postulated to be a necessary precondition for reconnection onset. Magnetic reconnection X-lines in the magnetotail have been observed to be more common duskward of midnight. We take advantage of the MMS tetrahedral formation during the 2017-2020 MMS tail seasons to calculate the thickness of the cross-tail neutral sheet relative to ion gyroradius. While a similar technique was applied to Cluster data, current sheet thickness over a broader range of radial distances has not been robustly explored before this study. We compare our analysis to recent theories regarding mechanisms of tail current sheet thinning and to recent simulations. We find MMS spent more than twice as long in ion-scale TCSs in the pre-midnight sector than post-midnight, despite nearly even plasma sheet dwell time. The dawn-dusk asymmetry in the distribution of Ion Diffusion Regions, as previously reported in relation to regions of TCSs, is also analyzed.
Collapse
Affiliation(s)
- A. J. Rogers
- Space Science CenterUniversity of New HampshireDurhamNHUSA
- Los Alamos National LaboratoryLos AlamosNMUSA
| | - C. J. Farrugia
- Space Science CenterUniversity of New HampshireDurhamNHUSA
| | - R. B. Torbert
- Space Science CenterUniversity of New HampshireDurhamNHUSA
| | | |
Collapse
|
3
|
Lukin AS, Artemyev AV, Vainchtein DL, Petrukovich AA. Regimes of ion dynamics in current sheets: The machine learning approach. Phys Rev E 2022; 106:065205. [PMID: 36671165 DOI: 10.1103/physreve.106.065205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Current sheets are spatially localized almost-one-dimensional (1D) structures with intense plasma currents. They play a key role in storing the magnetic field energy and they separate different plasma populations in planetary magnetospheres, the solar wind, and the solar corona. Current sheets are primary regions for the magnetic field line reconnection responsible for plasma heating and charged particle acceleration. One of the most interesting and widely observed types of 1D current sheets is the rotational discontinuity, which can be force-free or include plasma compression. Theoretical models of such 1D current sheets are based on the assumption of adiabatic motion of ions, i.e., ion adiabatic invariants are conserved. We focus on three current sheet configurations, widely observed in the Earth magnetopause and magnetotail and in the near-Earth solar wind. The magnetic field in such current sheets is supported by currents carried by transient ions, which exist only when there is a sufficient number of invariants. In this paper, we apply a machine learning approach, AI Poincaré, to determine parametrical domains where adiabatic invariants are conserved. For all three current sheet configurations, these domains are quite narrow and do not cover the entire parametrical range of observed current sheets. We discuss possible interpretation of obtained results indicating that 1D current sheets are dynamical rather than static plasma equilibria.
Collapse
Affiliation(s)
- A S Lukin
- Space Research Institute RAS, Moscow 117997, Russia.,Faculty of Physics, National Research University Higher School of Economics, Moscow 101000, Russia
| | - A V Artemyev
- Space Research Institute RAS, Moscow 117997, Russia.,Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90095, USA
| | - D L Vainchtein
- Space Research Institute RAS, Moscow 117997, Russia.,Nyheim Plasma Institute, Drexel University, Camden, New Jersey 08103, USA
| | | |
Collapse
|
4
|
Abstract
Occurrence of electrostatic solitary waves (ESWs) is ubiquitous in space plasmas, e.g., solar wind, Lunar wake and the planetary magnetospheres. Several theoretical models have been proposed to interpret the observed characteristics of the ESWs. These models can broadly be put into two main categories, namely, Bernstein–Green–Kruskal (BGK) modes/phase space holes models, and ion- and electron- acoustic solitons models. There has been a tendency in the space community to favor the models based on BGK modes/phase space holes. Only recently, the potential of soliton models to explain the characteristics of ESWs is being realized. The idea of this review is to present current understanding of the ion- and electron-acoustic solitons and double layers models in multi-component space plasmas. In these models, all the plasma species are considered fluids except the energetic electron component, which is governed by either a kappa distribution or a Maxwellian distribution. Further, these models consider the nonlinear electrostatic waves propagating parallel to the ambient magnetic field. The relationship between the space observations of ESWs and theoretical models is highlighted. Some specific applications of ion- and electron-acoustic solitons/double layers will be discussed by comparing the theoretical predictions with the observations of ESWs in space plasmas. It is shown that the ion- and electron-acoustic solitons/double layers models provide a plausible interpretation for the ESWs observed in space plasmas.
Collapse
|
5
|
Sorathia KA, Merkin VG, Panov EV, Zhang B, Lyon JG, Garretson J, Ukhorskiy AY, Ohtani S, Sitnov M, Wiltberger M. Ballooning-Interchange Instability in the Near-Earth Plasma Sheet and Auroral Beads: Global Magnetospheric Modeling at the Limit of the MHD Approximation. GEOPHYSICAL RESEARCH LETTERS 2020; 47:e2020GL088227. [PMID: 32999513 PMCID: PMC7507213 DOI: 10.1029/2020gl088227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/22/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Explosive magnetotail activity has long been understood in the context of its auroral manifestations. While global models have been used to interpret and understand many magnetospheric processes, the temporal and spatial scales of some auroral forms have been inaccessible to global modeling creating a gulf between observational and theoretical studies of these phenomena. We present here an important step toward bridging this gulf using a newly developed global magnetosphere-ionosphere model with resolution capturing ≲ 30 km azimuthal scales in the auroral zone. In a global magnetohydrodynamic (MHD) simulation of the growth phase of a synthetic substorm, we find the self-consistent formation and destabilization of localized magnetic field minima in the near-Earth magnetotail. We demonstrate that this destabilization is due to ballooning-interchange instability which drives earthward entropy bubbles with embedded magnetic fronts. Finally, we show that these bubbles create localized field-aligned current structures that manifest in the ionosphere with properties matching observed auroral beads.
Collapse
Affiliation(s)
- K. A. Sorathia
- The Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| | - V. G. Merkin
- The Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| | - E. V. Panov
- Space Research InstituteAustrian Academy of SciencesGrazAustria
| | - B. Zhang
- Department of Earth SciencesUniversity of Hong KongHong Kong
- High Altitude Observatory, National Center for Atmospheric ResearchBoulderCOUSA
| | - J. G. Lyon
- Department of Physics and AstronomyDartmouth CollegeHanoverNHUSA
| | - J. Garretson
- The Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| | - A. Y. Ukhorskiy
- The Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| | - S. Ohtani
- The Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| | - M. Sitnov
- The Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| | - M. Wiltberger
- High Altitude Observatory, National Center for Atmospheric ResearchBoulderCOUSA
| |
Collapse
|
6
|
Kirchen K, Harbert W, Apt J, Morgan MG. A Solar-Centric Approach to Improving Estimates of Exposure Processes for Coronal Mass Ejections. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2020; 40:1020-1039. [PMID: 32180238 DOI: 10.1111/risa.13461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 09/27/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
We present a solar-centric approach to estimating the probability of extreme coronal mass ejections (CME) using the Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph Experiment (LASCO) CME Catalog observations updated through May 2018 and an updated list of near-Earth interplanetary coronal mass ejections (ICME). We examine robust statistical approaches to the estimation of extreme events. We then assume a variety of time-independent distributions fitting, and then comparing, the different probability distributions to the relevant regions of the cumulative distributions of the observed CME speeds. Using these results, we then obtain the probability that the velocity of a CME exceeds a particular threshold by extrapolation. We conclude that about 1.72% of the CMEs recorded with SOHO LASCO arrive at the Earth over the time both data sets overlap (November 1996 to September 2017). Then, assuming that 1.72% of all CMEs pass the Earth, we can obtain a first-order estimate of the probability of an extreme space weather event on Earth. To estimate the probability over the next decade of a CME, we fit a Poisson distribution to the complementary cumulative distribution function. We inferred a decadal probability of between 0.01 and 0.09 for an event of at least the size of the large 2012 event, and a probability between 0.0002 and 0.016 for the size of the 1859 Carrington event.
Collapse
Affiliation(s)
- Kathrin Kirchen
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, USA
| | - William Harbert
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jay Apt
- Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, USA
- Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA
| | - M Granger Morgan
- Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Merkin VG, Panov EV, Sorathia KA, Ukhorskiy AY. Contribution of Bursty Bulk Flows to the Global Dipolarization of the Magnetotail During an Isolated Substorm. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2019; 124:8647-8668. [PMID: 32195073 PMCID: PMC7066714 DOI: 10.1029/2019ja026872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/24/2019] [Accepted: 08/27/2019] [Indexed: 05/31/2023]
Abstract
This paper addresses the question of the contribution of azimuthally localized flow channels and magnetic field dipolarizations embedded in them in the global dipolarization of the inner magnetosphere during substorms. We employ the high-resolution Lyon-Fedder-Mobarry global magnetosphere magnetohydrodynamic model and simulate an isolated substorm event, which was observed by the geostationary satellites and by the Magnetospheric Multiscale spacecraft. The results of our simulations reveal that plasma sheet flow channels (bursty bulk flows, BBFs) and elementary dipolarizations (dipolarization fronts, DFs) occur in the growth phase of the substorm but are rare and do not penetrate to the geosynchronous orbit. The substorm onset is characterized by an abrupt increase in the occurrence and intensity of BBFs/DFs, which penetrate well earthward of the geosynchronous orbit during the expansion phase. These azimuthally localized structures are solely responsible for the global (in terms of the magnetic local time) dipolarization of the inner magnetosphere toward the end of the substorm expansion. Comparison with the geostationary satellites and Magnetospheric Multiscale data shows that the properties of the BBFs/DFs in the simulation are similar to those observed, which gives credence to the above results. Additionally, the simulation reveals many previously observed signatures of BBFs and DFs, including overshoots and oscillations around their equilibrium position, strong rebounds and vortical tailward flows, and the corresponding plasma sheet expansion and thinning.
Collapse
Affiliation(s)
- V. G. Merkin
- The Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| | - E. V. Panov
- Space Research InstituteAustrian Academy of SciencesGrazAustria
| | - K. A. Sorathia
- The Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| | - A. Y. Ukhorskiy
- The Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| |
Collapse
|