1
|
Weisz A, James IC, Perez-Gonzalez M. Determination of sulphonated quinophthalones in Quinoline Yellow and its lakes using high-performance liquid chromatography. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:583-595. [PMID: 32053035 DOI: 10.1080/19440049.2020.1718775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Quinoline Yellow (QY, Colour Index No. 47005) is internationally used as a colour additive in foods, drugs, and cosmetics. The manufacture of QY requires sulphonating quinophthalone, and depending on the degree of sulphonation, various forms of QY result, containing different proportions of quinophthalone mono-, di-, and trisulfonic acid sodium salts (monoSA, diSA, and triSA, respectively). Regulations on the specific composition and uses of QY differ across countries with associated differences in names for QY. The QY form certified for use in the U.S. in drugs and cosmetics is known as D&C Yellow No. 10 (Y10). The Code of Federal Regulations (CFR) specifies that Y10 and its lakes consist of predominantly monoSA's, the sum of whose levels is ≥ 75%, and that the sum level of diSA's is ≤ 15%, with one of them (6'8'diSA) at ≤ 3%. The present work reports the development of an HPLC method for determining those CFR-specified values and the level of a non-CFR-specified component, 6'8'5triSA. The selected analytes, 6'SA, 6'5diSA, 6'8'diSA, and 6'8'5triSA, were quantified by using five-point-calibration curves (R2 > 0.999) with data-point ranges of 9.96-96.53%, 0.54-21.69%, 0.10-5.00%, and 0.11-5.53% by weight, respectively. The method was found to be precise (relative standard deviation values, 0.55-0.80%) and accurate (recovery values, 91.07-99.45%). LOD and LOQ values, respectively, were as follows: 1.23 and 3.70%, 6'SA; 0.42 and 1.26%, 6'5diSA; 0.11 and 0.34%, 6'8'diSA; and 0.01 and 0.04%, 6'8'5triSA. The HPLC method was applied successfully to the analysis of 20 Y10 and eight Y10 lake samples. It can be extended to other QY forms such as E104 and Yellow 203 because it enables analysis of 6'8'5triSA. This paper also addresses the implications of the varying structure depictions and CAS numbers of the QY components that are due to the existence of three tautomeric forms of quinophthalone.
Collapse
Affiliation(s)
- Adrian Weisz
- Office of Cosmetics and Colors, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - India C James
- Office of Cosmetics and Colors, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Marianita Perez-Gonzalez
- Office of Cosmetics and Colors, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| |
Collapse
|
2
|
Kwiatkowski A, Kolehmainen E, Ośmiałowski B. Conformational and Tautomeric Control by Supramolecular Approach in Ureido- N- iso-propyl, N'-4-(3-pyridin-2-one) pyrimidine. Molecules 2019; 24:molecules24132491. [PMID: 31288375 PMCID: PMC6651695 DOI: 10.3390/molecules24132491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/29/2019] [Accepted: 07/05/2019] [Indexed: 11/17/2022] Open
Abstract
Ureido-N-iso-propyl,N’-4-(3-pyridin-2-one)pyrimidine (1) and its 2-methoxy pyridine derivative (1Me) has been designed and prepared. The conformational equilibrium in urea moiety and tautomerism in the pyrimidine part have been investigated by variable temperature and 1H NMR titrations as well as DFT quantum chemical calculations. The studied compounds readily associate by triple hydrogen bonding with 2-aminonaphthyridine (A) and/or 2,6-bis(acetylamino)pyridine (B). In 1, the proton is forced to 1,3-tautomeric shift upon stimuli and keeps it position, even when one of the partners in the complex was replaced by another molecule. The observed tautomerism controlled by conformational state (kinetic trapping effect) opens new possibilities in molecular sensing that are based on the fact that reverse reaction is not preferred.
Collapse
Affiliation(s)
- Adam Kwiatkowski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Street, 87-100 Toruń, Poland
| | - Erkki Kolehmainen
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Borys Ośmiałowski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Street, 87-100 Toruń, Poland.
| |
Collapse
|
3
|
Hummert J, Reitsma G, Mayer N, Ikonnikov E, Eckstein M, Kornilov O. Femtosecond Extreme Ultraviolet Photoelectron Spectroscopy of Organic Molecules in Aqueous Solution. J Phys Chem Lett 2018; 9:6649-6655. [PMID: 30388021 DOI: 10.1021/acs.jpclett.8b02937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Time-resolved valence photoelectron spectroscopy is an established tool for studies of ultrafast molecular dynamics in the gas phase. Here we demonstrate time-resolved XUV photoelectron spectroscopy from dilute aqueous solutions of organic molecules, paving the way to application of this method to photodynamics studies of organic molecules in natural environments, which so far have only been accessible to all-optical transient spectroscopies. We record static and time-resolved photoelectron spectra of a sample molecule, quinoline yellow WS, analyze its electronic structure, and follow the relaxation dynamics upon excitation with 400 nm pulses. The dynamics exhibit three time scales, of which a 250 ± 70 fs time scale is attributed to solvent rearrangement. The two longer time scales of 1.3 ± 0.4 and 90 ± 20 ps can be correlated to the recently proposed ultrafast excited-state intramolecular proton transfer in a closely related molecule, quinophthalone.
Collapse
Affiliation(s)
- Johan Hummert
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Geert Reitsma
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Nicola Mayer
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Evgenii Ikonnikov
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Martin Eckstein
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Oleg Kornilov
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy , Max-Born-Strasse 2a , 12489 Berlin , Germany
| |
Collapse
|
4
|
Shedding new light on an old molecule: quinophthalone displays uncommon N-to-O excited state intramolecular proton transfer (ESIPT) between photobases. Sci Rep 2017. [PMID: 28634405 PMCID: PMC5478638 DOI: 10.1038/s41598-017-04114-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Excited state dynamics of common yellow dye quinophthalone (QPH) was probed by femtosecond transient absorption spectroscopy. Multi-exponential decay of the excited state and significant change of rate constants upon deuterium substitution indicate that uncommon nitrogen-to-oxygen excited state intramolecular proton transfer (ESIPT) occurs. By performing density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations, we found that adiabatic surface crossing between the S1 and S2 states takes place in the photoreaction. Unlike most cases of ESIPT, QPH does not exhibit tautomer emission, possibly due to internal conversion or back-proton transfer. The ESIPT of QPH presents a highly interesting case also because the moieties participating in ESIPT, quinoline and aromatic carbonyl, are both traditionally considered as photobases.
Collapse
|
5
|
Krygowski TM, Szatylowicz H, Stasyuk OA, Dominikowska J, Palusiak M. Aromaticity from the viewpoint of molecular geometry: application to planar systems. Chem Rev 2014; 114:6383-422. [PMID: 24779633 DOI: 10.1021/cr400252h] [Citation(s) in RCA: 375] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Tadeusz M Krygowski
- Department of Chemistry, Warsaw University , Pasteura 1, 02-093 Warsaw, Poland
| | | | | | | | | |
Collapse
|
6
|
Intramolecular hydrogen bond in the push–pull CF3-aminoenones: DFT and FTIR study, NBO analysis. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.12.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Jones RC, Herasymchuk K, Mahdi T, Petrov A, Resanović S, Vaughan DG, Lough AJ, Quail JW, Koivisto BD, Wylie RS, Gossage RA. Tautomerism and metal complexation of 2-acylmethyl-2-oxazolines: a combined synthetic, spectroscopic, crystallographic and theoretical treatment. Org Biomol Chem 2013; 11:3484-93. [PMID: 23591452 DOI: 10.1039/c3ob25867j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A synthetic, structural and theoretical investigation into the solid-state, solution and gas phase structure(s) of six 2-acylmethyl-4,4-dimethyl-2-oxazolines is reported. Four of these materials, viz.α-[(4,5-dihydro-4,4-dimethyl-2-oxazolyl)methylene]benzenemethanol (3a), α-[(4,5-dihydro-4,4-dimethyl-2-oxazolyl)methylene]-(4-nitrobenzene)methanol (3b), 1-(4,5-dihydro-4,4-dimethyl-2-oxazolyl)-3,3-dimethyl-1-buten-2-ol (3d) and (E)-1-phenyl-2-((3aR)-3,3a,8,8a-tetrahydro-2H-indeno[1,2-d]oxazol-2-ylidene)ethanone (3f) have been characterised in the solid-state by single crystal X-ray diffraction studies. These data represent the first solid-state structural studies of this class of compounds and details the first synthesis and full characterisation of chiral derivative 3f. All four of these materials are shown to exist in the solid phase in the enamine tautomeric form (e.g., 3a is best described as 2-[4,4-dimethyl-2-oxazolidinylidene]-1-phenylethanone) and it is suggested (NMR, IR) that this isomeric form is likely also retained in solution (e.g., CDCl3) as the more stable isomer. An investigation of the relative gas phase stabilities of the three possible (i.e., the (Z)-enol, keto and enamine) isomers of all five compounds by DFT at the B3LYP/6-311G(d) level of theory confirms the latter as the most stable form. The energy differences between the enamine and keto tautomers have been calculated to be the lowest for derivative 3d. These results are compared and contrasted with the previously reported NMR studies of such compounds which have identified the keto form as being a minor (albeit solution) tautomer. Equilibrium solution tautomer distributions for 3d are found to be solvent dependent. The protonated form of 3a, isolated as the HSO4(-) salt (i.e.4a), has been further characterised in the solid state by single crystal X-ray diffraction. These data represent the first example of a protonated oxazoline to be structurally elucidated and confirms that upon protonation, the keto (oxazoline) tautomer is the energetically favoured form in the solid-state. This observation is further supported by DFT studies for the gas phase protonated forms of such materials. Further DFT (B3LYP/6-311G(d)) calculations employing the SM8 or SMD solvation models were then applied to address the observed solution isomeric distribution for 3d; these results corroborate the gas phase theoretical treatment and also yield values that predict the higher solution stability of the enamine form as observed, although they fail to account for the existence of the keto form as a minor solution state tautomer. To access the availability of an enol-form, via hypothetical de-protonation to the enolate, compound 3a was treated with hydrated Cu(NO3)2 in EtOH solution. The resulting isolated green-coloured product (5), the first metal derivative of this entire class of ligands, is best described (IR, X-ray diffraction) as a coordinated enolate complex, i.e., Cu(3a-H)2. Complex 5 crystallizes in the P21/c space group with four molecules in the unit cell. The coordination geometry around the formal Cu(2+) metal centre is determined to be highly distorted square planar in nature (τ4 = 0.442). TD-DFT is used to give a reasonable explanation for the intensity of the absorbance band observed in the visible region for solutions of 5. These latter experiments strongly suggest that the title class of compounds may have considerable potential as ligands in coordination chemistry and/or metal-mediated catalysis.
Collapse
Affiliation(s)
- Roderick C Jones
- School of Chemistry, University of Tasmania, Hobart, TAS 7001, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cordaro M, Risitano F, Scala A, Rescifina A, Chiacchio U, Grassi G. Self-catalyzed Mannich-type reaction of enolizable cyclic 1,3-dicarbonyls to acyclic nitrones: an entry to functionalized β-enamino diones. J Org Chem 2013; 78:3972-9. [PMID: 23506161 DOI: 10.1021/jo400331b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A new method for the preparation of highly functionalized β-enamino diones has been developed. The protocol involves an initial self-catalyzed Mannich-type reaction of enolizable cyclic 1,3-dicarbonyls to nitrones, followed by a spontaneous intramolecular reorganization of the resulting nonisolated hydroxylamine to enamino derivatives. These compounds retain the features of unnatural α-amino acids. The ease of preparation makes them attractive intermediates for the synthesis of peptidomimetics, polyheterocycles, and other multifunctional compounds. All experimental results have been efficiently rationalized by in silico studies at the M06-2X level of theory, and a valid mechanistic pathway has been proposed.
Collapse
Affiliation(s)
- Massimiliano Cordaro
- Dipartimento di Scienze Chimiche, Università di Messina, V. le F. Stagno d'Alcontres 31, Messina 98166, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Dial BE, Pellechia PJ, Smith MD, Shimizu KD. Proton Grease: An Acid Accelerated Molecular Rotor. J Am Chem Soc 2012; 134:3675-8. [DOI: 10.1021/ja2120184] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brent E. Dial
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina
29208, United States
| | - Perry J. Pellechia
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina
29208, United States
| | - Mark D. Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina
29208, United States
| | - Ken D. Shimizu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina
29208, United States
| |
Collapse
|
10
|
Ponikvar-Svet M, Liebman JF. Interplay of thermochemistry and Structural Chemistry, the journal (volume 21, 2010) and the discipline. Struct Chem 2011. [DOI: 10.1007/s11224-011-9769-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|