1
|
Bhatia N, Thareja S. Aromatase inhibitors for the treatment of breast cancer: An overview (2019-2023). Bioorg Chem 2024; 151:107607. [PMID: 39002515 DOI: 10.1016/j.bioorg.2024.107607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/02/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Aromatase inhibition is considered a legitimate approach for the treatment of ER-positive (ER+) breast cancer as it accounts for more than 70% of breast cancer cases. Aromatase inhibitor therapy has been demonstrated to be highly effective in decreasing tumour size, increasing survival rates, and lowering the chance of cancer recurrence. The present review deliberates the pathophysiology and the role of aromatase in estrogen biosynthesis. Estrogen biosynthesis, various androgens, and their function in the human body have also been discussed. The salient aspects of the aromatase active site, its mode of action, and AIs, along with their intended interactions with presently FDA-approved inhibitors, have been briefly discussed. It has been detailed how different reported AIs were designed, their SAR investigations, in silico analysis, and biological evaluations. Various AIs from multiple origins, such as synthetic and semi-synthetic, have also been discussed.
Collapse
Affiliation(s)
- Neha Bhatia
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
2
|
Tateishi Y, McCarty KD, Martin MV, Yoshimoto FK, Guengerich FP. Roles of Ferric Peroxide Anion Intermediates (Fe 3+O 2 -, Compound 0) in Cytochrome P450 19A1 Steroid Aromatization and a Cytochrome P450 2B4 Secosteroid Oxidation Model. Angew Chem Int Ed Engl 2024; 63:e202406542. [PMID: 38820076 PMCID: PMC11519728 DOI: 10.1002/anie.202406542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/02/2024]
Abstract
Cytochrome P450 (P450, CYP) 19A1 is the steroid aromatase, the enzyme responsible for the 3-step conversion of androgens (androstenedione or testosterone) to estrogens. The final step is C-C bond scission (removing the 19-oxo group as formic acid) that proceeds via a historically controversial reaction mechanism. The two competing mechanistic possibilities involve a ferric peroxide anion (Fe3+O2 -, Compound 0) and a perferryl oxy species (FeO3+, Compound I). One approach to discern the role of each species in the reaction is with the use of oxygen-18 labeling, i.e., from 18O2 and H2 18O of the reaction product formic acid. We applied this approach, using several technical improvements, to study the deformylation of 19-oxo-androstenedione by human P450 19A1 and of a model secosteroid, 3-oxodecaline-4-ene-10-carboxaldehyde (ODEC), by rabbit P450 2B4. Both aldehyde substrates were sensitive to non-enzymatic acid-catalyzed deformylation, yielding 19-norsteroids, and conditions were established to avoid issues with artifactual generation of formic acid. The Compound 0 reaction pathway predominated (i.e., Fe3+O2 -) in both P450 19A1 oxidation of 19-oxo-androstenedione and P450 2B4 oxidation of ODEC. The P450 19A1 results contrast with our prior conclusions (J. Am. Chem. Soc. 2014, 136, 15016-16025), attributed to several technical modifications.
Collapse
Affiliation(s)
- Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232-0146, United States
| | - Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232-0146, United States
| | - Martha V Martin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232-0146, United States
| | - Francis K Yoshimoto
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, 78249, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232-0146, United States
| |
Collapse
|
3
|
Shaya J, Aloum L, Lu CS, Corridon PR, Aoudi A, Shunnar A, Alefishat E, Petroianu G. Theoretical Study of Hydroxylation of α- and β-Pinene by a Cytochrome P450 Monooxygenase Model. Int J Mol Sci 2023; 24:ijms24065150. [PMID: 36982225 PMCID: PMC10048887 DOI: 10.3390/ijms24065150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/30/2023] Open
Abstract
Previous studies on biocatalytic transformations of pinenes by cytochrome P450 (CYP) enzymes reveal the formation of different oxygenated products from a single substrate due to the multistate reactivity of CYP and the many reactive sites in the pinene scaffold. Up until now, the detailed mechanism of these biocatalytic transformations of pinenes have not been reported. Hereby, we report a systematic theoretical study of the plausible hydrogen abstraction and hydroxylation reactions of α- and β-pinenes by CYP using the density functional theory (DFT) method. All DFT calculations in this study were based on B3LYP/LAN computational methodology using the Gaussian09 software. We used the B3LYP functional with corrections for dispersive forces, BSSE, and anharmonicity to study the mechanism and thermodynamic properties of these reactions using a bare model (without CYP) and a pinene-CYP model. According to the potential energy surface and Boltzmann distribution for radical conformers, the major reaction products of CYP-catalyzed hydrogen abstraction from β-pinene are the doublet trans (53.4%) and doublet cis (46.1%) radical conformer at delta site. The formation of doublet cis/trans hydroxylated products released a total Gibbs free energy of about 48 kcal/mol. As for alpha pinene, the most stable radicals were trans-doublet (86.4%) and cis-doublet (13.6%) at epsilon sites, and their hydroxylation products released a total of ~50 kcal/mol Gibbs free energy. Our results highlight the likely C-H abstraction and oxygen rebounding sites accounting for the multi-state of CYP (doublet, quartet, and sextet spin states) and the formation of different conformers due to the presence of cis/trans allylic hydrogen in α-pinene and β-pinene molecules.
Collapse
Affiliation(s)
- Janah Shaya
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Lujain Aloum
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Chung-Shin Lu
- Department of General Education, National Taichung University of Science and Technology, Taichung 404, Taiwan, China
| | - Peter R Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Abdulrahman Aoudi
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Abeer Shunnar
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11972, Jordan
| | - Georg Petroianu
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
4
|
Bagha UK, Satpathy JK, Mukherjee G, Sastri CV, de Visser SP. A comprehensive insight into aldehyde deformylation: mechanistic implications from biology and chemistry. Org Biomol Chem 2021; 19:1879-1899. [PMID: 33406196 DOI: 10.1039/d0ob02204g] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aldehyde deformylation is an important reaction in biology, organic chemistry and inorganic chemistry and the process has been widely applied and utilized. For instance, in biology, the aldehyde deformylation reaction has wide differences in biological function, whereby cyanobacteria convert aldehydes into alkanes or alkenes, which are used as natural products for, e.g., defense mechanisms. By contrast, the cytochromes P450 catalyse the biosynthesis of hormones, such as estrogen, through an aldehyde deformylation reaction step. In organic chemistry, the aldehyde deformylation reaction is a common process for replacing functional groups on a molecule, and as such, many different synthetic methods and procedures have been reported that involve an aldehyde deformylation step. In bioinorganic chemistry, a variety of metal(iii)-peroxo complexes have been synthesized as biomimetic models and shown to react efficiently with aldehydes through deformylation reactions. This review paper provides an overview of the various aldehyde deformylation reactions in organic chemistry, biology and biomimetic model systems, and shows a broad range of different chemical reaction mechanisms for this process. Although a nucleophilic attack at the carbonyl centre is the consensus reaction mechanism, several examples of an alternative electrophilic reaction mechanism starting with hydrogen atom abstraction have been reported as well. There is still much to learn and to discover on aldehyde deformylation reactions, as deciphered in this review paper.
Collapse
Affiliation(s)
- Umesh Kumar Bagha
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | | | - Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Sam P de Visser
- Manchester Institute of Biotechnology and the Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
5
|
Su H, Wang B, Shaik S. Quantum-Mechanical/Molecular-Mechanical Studies of CYP11A1-Catalyzed Biosynthesis of Pregnenolone from Cholesterol Reveal a C-C Bond Cleavage Reaction That Occurs by a Compound I-Mediated Electron Transfer. J Am Chem Soc 2019; 141:20079-20088. [PMID: 31741382 DOI: 10.1021/jacs.9b08561] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We explore here a long-standing mechanistic question by using quantum-mechanical/molecular-mechanical (QM/MM) methodology. The question concerns the mechanism of steroid hormone biosynthesis, whereby the P450 enzyme, CYP11A1, catalyzes the C20-C22 bond-cleavage in the 20,22-hydroxylated cholesterol, 20R,22R-DiOHCH, leading to pregnenolone, which is critical for the subsequent production of all steroid hormones. This is an unusual feat whereby the P450 enzyme breaks two O-H bonds and one C-C bond, while making two C═O bonds. How does the enzyme perform such a complex and highly energy-demanding reaction? Our computational results rule out the previously proposed Compound I (Cpd I) electrophilic attack mechanism via the formation of a peroxide intermediate as well as the H-abstraction-mediated C-C cleavage mechanism. Notably, oxygen-rebound cannot transpire, in spite of the fact that the classical active species, Cpd I, participates in the catalytic process. Our findings reveal a mechanism whereby C-C bond cleavage is mediated by an electron transfer from the C22-O--deprotonated substrate to Cpd I. As such, our QM/MM calculations demonstrate that Cpd I acts as an electron sink that facilitates the C-C bond cleavage.
Collapse
Affiliation(s)
- Hao Su
- Institute of Chemistry , The Hebrew University of Jerusalem , 9190400 Jerusalem , Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 360015 , P. R. China
| | - Sason Shaik
- Institute of Chemistry , The Hebrew University of Jerusalem , 9190400 Jerusalem , Israel
| |
Collapse
|
6
|
Spinello A, Pavlin M, Casalino L, Magistrato A. A Dehydrogenase Dual Hydrogen Abstraction Mechanism Promotes Estrogen Biosynthesis: Can We Expand the Functional Annotation of the Aromatase Enzyme? Chemistry 2018; 24:10840-10849. [DOI: 10.1002/chem.201802025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Angelo Spinello
- CNR-IOM-Democritos, c/o International School for Advanced Studies (SISSA); via Bonomea 265 34136 Trieste Italy
| | - Matic Pavlin
- CNR-IOM-Democritos, c/o International School for Advanced Studies (SISSA); via Bonomea 265 34136 Trieste Italy
| | - Lorenzo Casalino
- International School for Advanced Studies (SISSA); via Bonomea 265 34136 Trieste Italy
| | - Alessandra Magistrato
- CNR-IOM-Democritos, c/o International School for Advanced Studies (SISSA); via Bonomea 265 34136 Trieste Italy
| |
Collapse
|
7
|
Alberro N, Torrent-Sucarrat M, Arrieta A, Rubiales G, Cossío FP. Density Functional Theory Study on the Demethylation Reaction between Methylamine, Dimethylamine, Trimethylamine, and Tamoxifen Catalyzed by a Fe(IV)-Oxo Porphyrin Complex. J Phys Chem A 2018; 122:1658-1671. [PMID: 29320849 DOI: 10.1021/acs.jpca.7b10654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this work, we studied computationally the N-demethylation reaction of methylamine, dimethylamine, and trimethylamine as archetypal examples of primary, secondary, and tertiary amines catalyzed by high-field low-spin Fe-containing enzymes such as cytochromes P450. Using DFT calculations, we found that the expected C-H hydroxylation process was achieved for trimethylamine. When dimethylamine and methylamine were studied, two different reaction mechanisms (C-H hydroxylation and a double hydrogen atom transfer) were computed to be energetically accessible and both are equally preferred. Both processes led to the formation of formaldehyde and the N-demethylated substrate. Finally, as an illustrative example, the relative contribution of the three primary oxidation routes of tamoxifen was rationalized through energetic barriers obtained from density functional calculations and docking experiments involving CYP3A4 and CYP2D6 isoforms. We found that the N-demethylation process was the intrinsically favored one, whereas other oxidation reactions required most likely preorganization imposed by the residues close to the active sites.
Collapse
Affiliation(s)
- Nerea Alberro
- Department of Organic Chemistry I, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Centro de Innovación en Química Avanzada (ORFEO-CINQA) , Manuel Lardizabal Ibilbidea 3, 20018 San Sebastián/Donostia, Spain
| | - Miquel Torrent-Sucarrat
- Department of Organic Chemistry I, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Centro de Innovación en Química Avanzada (ORFEO-CINQA) , Manuel Lardizabal Ibilbidea 3, 20018 San Sebastián/Donostia, Spain.,Donostia International Physics Center (DIPC) , Manuel Lardizabal Ibilbidea 4, 20018 San Sebastián/Donostia, Spain.,Ikerbasque, Basque Foundation for Science , María Díaz de Haro 3, 6°, 48013 Bilbao, Spain
| | - Ana Arrieta
- Department of Organic Chemistry I, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Centro de Innovación en Química Avanzada (ORFEO-CINQA) , Manuel Lardizabal Ibilbidea 3, 20018 San Sebastián/Donostia, Spain
| | - Gloria Rubiales
- Department of Organic Chemistry I, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Centro de Innovación en Química Avanzada (ORFEO-CINQA) , Manuel Lardizabal Ibilbidea 3, 20018 San Sebastián/Donostia, Spain
| | - Fernando P Cossío
- Department of Organic Chemistry I, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Centro de Innovación en Química Avanzada (ORFEO-CINQA) , Manuel Lardizabal Ibilbidea 3, 20018 San Sebastián/Donostia, Spain.,Donostia International Physics Center (DIPC) , Manuel Lardizabal Ibilbidea 4, 20018 San Sebastián/Donostia, Spain
| |
Collapse
|
8
|
Ghadari R. The role of human CYP2C8 in the metabolizing of montelukast-like compounds: a computational study. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-2911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Lábas A, Krámos B, Oláh J. Combined Docking and Quantum Chemical Study on CYP-Mediated Metabolism of Estrogens in Man. Chem Res Toxicol 2016; 30:583-594. [PMID: 27966929 DOI: 10.1021/acs.chemrestox.6b00330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Long-term exposure to estrogens seriously increases the incidence of various diseases including breast cancer. Experimental studies indicate that cytochrome P450 (CYP) enzymes catalyze the bioactivation of estrogens to catechols, which can exert their harmful effects via various routes. It has been shown that the 4-hydroxylation pathway of estrogens is the most malign, while 2-hydroxylation is considered a benign pathway. It is also known experimentally that with increasing unsaturation of ring B of estrogens the prevalence of the 4-hydroxylation pathway significantly increases. In this study, we used a combination of structural analysis, docking, and quantum chemical calculations at the B3LYP/6-311+G* level to investigate the factors that influence the regioselectivity of estrogen metabolism in man. We studied the structure of human estrogen metabolizing enzymes (CYP1A1, CYP1A2, CYP1B1, and CYP3A4) in complex with estrone using docking and investigated the susceptibility of estrone, equilin, and equilenin (which only differ in the unsaturation of ring B) to undergo 2- and 4-hydroxylation using several models of CYP enzymes (Compound I, methoxy, and phenoxy radical). We found that even the simplest models could account for the experimental difference between the 2- and 4- hydroxylation pathways and thus might be used for fast screening purposes. We also show that reactivity indices, specifically in this case the radical and nucleophilic condensed Fukui functions, also correctly predict the likeliness of estrogen derivatives to undergo 2- or 4-hydroxylation.
Collapse
Affiliation(s)
- Anikó Lábas
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics , Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Balázs Krámos
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics , Szent Gellért tér 4, H-1111 Budapest, Hungary.,Institute of Organic Chemistry Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar Tudósok körútja 2, Budapest, P.O. Box 286, 1519 Hungary
| | - Julianna Oláh
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics , Szent Gellért tér 4, H-1111 Budapest, Hungary
| |
Collapse
|
10
|
Interplay of thermochemistry and Structural Chemistry, the journal (Volume 26, 2015, Issues 1–2) and the discipline. Struct Chem 2016. [DOI: 10.1007/s11224-016-0751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Viciano I, Martí S. Theoretical Study of the Mechanism of Exemestane Hydroxylation Catalyzed by Human Aromatase Enzyme. J Phys Chem B 2016; 120:3331-43. [PMID: 26972150 DOI: 10.1021/acs.jpcb.6b01014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human aromatase (CYP19A1) aromatizes the androgens to form estrogens via a three-step oxidative process. The estrogens are necessary in humans, mainly in women, because of the role they play in sexual and reproductive development. However, these also are involved in the development and growth of hormone-dependent breast cancer. Therefore, inhibition of the enzyme aromatase, by means of drugs known as aromatase inhibitors, is the frontline therapy for these types of cancers. Exemestane is a suicidal third-generation inhibitor of aromatase, currently used in breast cancer treatment. In this study, the hydroxylation of exemestane catalyzed by aromatase has been studied by means of hybrid QM/MM methods. The Free Energy Perturbation calculations provided a free energy of activation for the hydrogen abstraction step (rate-limiting step) of 17 kcal/mol. The results reveal that the hydroxylation of exemestane is not the inhibition stage, suggesting a possible competitive mechanism between the inhibitor and the natural substrate androstenedione in the first catalytic subcycle of the enzyme. Furthermore, the analysis of the interaction energy for the substrate and the cofactor in the active site shows that the role of the enzymatic environment during this reaction consists of a transition state stabilization by means of electrostatic effects.
Collapse
Affiliation(s)
- Ignacio Viciano
- Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castelló, Spain
| | - Sergio Martí
- Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castelló, Spain
| |
Collapse
|
12
|
Qi SC, Hayashi JI, Zhang L. Recent application of calculations of metal complexes based on density functional theory. RSC Adv 2016. [DOI: 10.1039/c6ra16168e] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent application of density functional theory (DFT) for metal complexes is reviewed to show the achievements of DFT and the challenges for it, as well as the methods for selecting proper functionals.
Collapse
Affiliation(s)
- Shi-Chao Qi
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Kasuga
- Japan
| | - Jun-ichiro Hayashi
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Kasuga
- Japan
| | - Lu Zhang
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Kasuga
- Japan
| |
Collapse
|
13
|
Sgrignani J, Iannuzzi M, Magistrato A. Role of Water in the Puzzling Mechanism of the Final Aromatization Step Promoted by the Human Aromatase Enzyme. Insights from QM/MM MD Simulations. J Chem Inf Model 2015; 55:2218-26. [DOI: 10.1021/acs.jcim.5b00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jacopo Sgrignani
- CNR-IOM-Democritos
National Simulation Center c/o International School for Advanced Studies
(SISSA/ISAS), via Bonomea 265, Trieste, Trieste, Italy
| | - Marcella Iannuzzi
- Physical
Chemistry Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Zurich, Switzerland
| | - Alessandra Magistrato
- CNR-IOM-Democritos
National Simulation Center c/o International School for Advanced Studies
(SISSA/ISAS), via Bonomea 265, Trieste, Trieste, Italy
| |
Collapse
|
14
|
Xu K, Wang Y, Hirao H. Estrogen Formation via H-Abstraction from the O–H Bond of gem-Diol by Compound I in the Reaction of CYP19A1: Mechanistic Scenario Derived from Multiscale QM/MM Calculations. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00510] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kai Xu
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Yong Wang
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hajime Hirao
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|