1
|
Baidya SK, Banerjee S, Ghosh B, Jha T, Adhikari N. Assessing structural insights into in-house arylsulfonyl L-(+) glutamine MMP-2 inhibitors as promising anticancer agents through structure-based computational modelling approaches. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:805-830. [PMID: 37850742 DOI: 10.1080/1062936x.2023.2261842] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/17/2023] [Indexed: 10/19/2023]
Abstract
MMP-2 is potentially contributing to several cancer progressions including leukaemias. Therefore, considering MMP-2 as a promising target, novel anticancer compounds may be designed. Here, 32 in-house arylsulfonyl L-(+) glutamines were subjected to various structure-based computational modelling approaches to recognize crucial structural attributes along with the spatial orientation for higher MMP-2 inhibition. Again, the docking-based 2D-QSAR study revealed that the Coulomb energy conferred by Tyr142 and total interaction energy conferred by Ala84 was crucial for MMP-2 inhibition. Importantly, the docking-dependent CoMFA and CoMSIA study revealed the importance of favourable steric, electrostatic, and hydrophobic substituents at the terminal phenyl ring. The MD simulation study revealed a lower fluctuation in the RMSD, RMSF, and Rg values indicating stable binding interactions of MMP-2 and these molecules. Moreover, the residual hydrogen bond and their interaction analysis disclosed crucial amino acid residues responsible for forming potential hydrogen bonding for higher MMP-2 inhibition. The results can effectively aid in the design and discovery of promising small-molecule drug-like MMP-2 inhibitors with greater anticancer potential in the future.
Collapse
Affiliation(s)
- S K Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - B Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - N Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
2
|
Baidya SK, Banerjee S, Adhikari N, Jha T. Selective Inhibitors of Medium-Size S1' Pocket Matrix Metalloproteinases: A Stepping Stone of Future Drug Discovery. J Med Chem 2022; 65:10709-10754. [PMID: 35969157 DOI: 10.1021/acs.jmedchem.1c01855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Among various matrix metalloproteinases (MMPs), MMPs having medium-size S1' pockets are established as promising biomolecular targets for executing crucial roles in cancer, cardiovascular diseases, and neurodegenerative diseases. However, no such MMP inhibitors (MMPIs) are available to date as drug candidates despite a lot of continuous research work for more than three decades. Due to a high degree of structural resemblance among these MMPs, designing selective MMPIs is quite challenging. However, the variability and uniqueness of the S1' pockets of these MMPs make them promising targets for designing selective MMPIs. In this perspective, the overall structural aspects of medium-size S1' pocket MMPs including the unique binding patterns of enzyme-inhibitor interactions have been discussed in detail to acquire knowledge regarding selective inhibitor designing. This overall knowledge will surely be a curtain raiser for the designing of selective MMPIs as drug candidates in the future.
Collapse
Affiliation(s)
- Sandip Kumar Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
3
|
Das S, Amin SA, Gayen S, Jha T. Insight into the structural requirements of gelatinases (MMP-2 and MMP-9) inhibitors by multiple validated molecular modelling approaches: Part II. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:167-192. [PMID: 35301933 DOI: 10.1080/1062936x.2022.2041722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Inhibition of the matrix metalloproteinases (MMPs) is effective against metastasis of secondary tumours. Previous MMP inhibitors have failed in clinical trials due to their off-target toxicity in solid tumours. Thus, newer MMP inhibitors now have paramount importance. Here, different molecular modelling techniques were applied on a dataset of 110 gelatinase (MMP-2 and MMP-9) inhibitors. The objectives of the present study were to identify structural fingerprints for gelatinase inhibition and also to develop statistically validated QSAR models for the screening and prediction of different derivatives as MMP-2 (gelatinase A) and MMP-9 (gelatinase B) inhibitors. The Bayesian classification study provided the ROC values for the training set of 0.837 and 0.815 for MMP-2 and MMP-9, respectively. The linear model also produced the leave-one-out cross-validated Q2 of 0.805 (eq. 1, MMP-2) and 0.724 (eq. 2, MMP-9), an r2 of 0.845 (eq. 1, MMP-2) and 0.782 (eq. 2, MMP-9), an r2Pred of 0.806 (eq. 1, MMP-2) and 0.732 (eq. 2, MMP-9). Similarly, non-linear learning models were also statistically significant and reliable. Overall, this study may help in the rational design of newer compounds with higher gelatinase inhibition to fight against both primary and secondary cancers in future.
Collapse
Affiliation(s)
- S Das
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S A Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
4
|
Abstract
MMP2, a Zn2+-dependent metalloproteinase, is related to cancer and angiogenesis. Inhibition of this enzyme might result in a potential antimetastatic drug to leverage the anticancer drug armory. In silico or computer-aided ligand-based drug design is a method of rational drug design that takes multiple chemometrics (i.e., multi-quantitative structure-activity relationship methods) into account for virtually selecting or developing a series of probable selective MMP2 inhibitors. Though existing matrix metalloproteinase inhibitors have shown plausible pan-matrix metalloproteinase (MMP) activity, they have resulted in various adverse effects leading to their being rescinded in later phases of clinical trials. Therefore a review of the ligand-based designing methods of MMP2 inhibitors would result in an explicit route map toward successfully designing and synthesizing novel and selective MMP2 inhibitors.
Collapse
|
5
|
Guti S, Baidya SK, Banerjee S, Adhikari N, Jha T. A robust classification-dependent multi-molecular modelling study on some biphenyl sulphonamide based MMP-8 inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:835-861. [PMID: 34587852 DOI: 10.1080/1062936x.2021.1976831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Matrix metalloproteinases (MMPs) are a group of zinc and calcium-dependent endopeptidases, which contribute to different physiological and biological activities via extracellular matrix (ECM) degradation. Matrix metalloproteinase-8 (MMP-8) belongs to type-II collagenases of the MMP family that has contribution in several physiological disorders such as cardiovascular diseases, joint, renal, digestive and respiratory disorders as well as in cancer. In clinical study, MMP-8 is found to be associated with periodontal disease condition. Therefore, MMP-8 specific inhibitors should be developed to target these disorders. The biphenyl sulphonamide (BPS) moiety is one of the crucial structural characteristics found in several MMP-8 inhibitors. Here, different classification-based molecular modelling methods were used to explore the structural features that lead to the activity variation of a series of MMP-8 inhibitors possessing a BPS moiety. Our current classification-based structural analysis of these BPS-derived MMP-8 inhibitors was able to identify the importance of several structural features such as the tetrahydroisoquinoline and N-Boc pyridyl groups, which have positive influences on MMP-8 inhibition. This study was also reflected the importance of the zinc-binding groups (ZBGs) like the hydroxamate and phosphonate for potent and sub-nanomolar range MMP-8 inhibition, which may benefit the development of highly potent MMP-8 inhibitors.
Collapse
Affiliation(s)
- S Guti
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S K Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - N Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
6
|
Das S, Amin SA, Jha T. Insight into the structural requirement of aryl sulphonamide based gelatinases (MMP-2 and MMP-9) inhibitors - Part I: 2D-QSAR, 3D-QSAR topomer CoMFA and Naïve Bayes studies - First report of 3D-QSAR Topomer CoMFA analysis for MMP-9 inhibitors and jointly inhibitors of gelatinases together. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:655-687. [PMID: 34355614 DOI: 10.1080/1062936x.2021.1955414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Gelatinases [gelatinase A - matrix metalloproteinase-2 (MMP-2), gelatinase B - matrix metalloproteinase-9 (MMP-9)] play key roles in many disease conditions including cancer. Despite some research work on gelatinases inhibitors both jointly and individually had been reported, challenges still exist in achieving potency as well as selectivity. Here in part I of a series of work, we have reported the structural requirement of some arylsulfonamides. In particular, regression-based 2D-QSARs, topomer CoMFA (comparative molecular field analysis) and Bayesian classification models were constructed to refine structural features for attaining better gelatinase inhibitory activity. The 2D-QSAR models exhibited good statistical significance. The descriptors nsssN, SHBint6, SHBint7, PubchemFP629 were directly correlated with the MMP-2 binding affinities whereas nsssN, SHBint10 and AATS2i were directly proportional to MMP-9 binding affinities. The topomer CoMFA results indicated that the steric and electrostatic fields play key roles in gelatinase inhibition. The established Naïve Bayes prediction models were evaluated by fivefold cross validation and an external test set. Furthermore, important molecular descriptors related to MMP-2 and MMP-9 binding affinities and some active/inactive fragments were identified. Thus, these observations may be helpful for further work of aryl sulphonamide based gelatinase inhibitors in future.
Collapse
Affiliation(s)
- S Das
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S A Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
7
|
Structural analysis of arylsulfonamide-based carboxylic acid derivatives: a QSAR study to identify the structural contributors toward their MMP-9 inhibition. Struct Chem 2020. [DOI: 10.1007/s11224-020-01635-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Banerjee S, Amin SA, Baidya SK, Adhikari N, Jha T. Exploring the structural aspects of ureido-amino acid-based APN inhibitors: a validated comparative multi-QSAR modelling study. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:325-345. [PMID: 32174187 DOI: 10.1080/1062936x.2020.1734080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
The zinc-dependent enzyme aminopeptidase N (APN) is a member of the M1 metalloenzyme family. The multi-functionality of APN as a peptidase, a receptor and a signalling molecule has provided it the access to influence a number of disease conditions namely viral diseases, angiogenesis, cellular metastasis and invasion including different cancer conditions. Hence, the development of potent APN inhibitors is a possible route for the treatment of diseases related to the activity of APN. In this study, different QSAR approaches have been adopted to identify the structural features of a group of hydroxamate-based ureido-amino acid derivative APN inhibitors. This study was able to identify different constitutional aspects of these APN inhibitors which are important for their inhibitory potency. Additionally, some of these observations were also aligned with the observations of previously performed QSAR studies conducted on different APN inhibitors. Therefore, the results of this study may help to design potent and effective APN inhibitors in the future.
Collapse
Affiliation(s)
- S Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University , Kolkata, India
| | - S A Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University , Kolkata, India
| | - S K Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University , Kolkata, India
| | - N Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University , Kolkata, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University , Kolkata, India
| |
Collapse
|
9
|
Mondal S, Adhikari N, Banerjee S, Amin SA, Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur J Med Chem 2020; 194:112260. [PMID: 32224379 DOI: 10.1016/j.ejmech.2020.112260] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/28/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc dependent proteolytic metalloenzyme. MMP-9 is one of the most complex forms of matrix metalloproteinases. MMP-9 has the ability to degrade the extracellular matrix (ECM) components and has important role in the pathophysiological functions. Overexpression and dysregulation of MMP-9 is associated with various diseases. Thus, regulation and inhibition of MMP-9 is an important therapeutic approach for combating various diseases including cancer. Inhibitors of MMP-9 can be used as anticancer agents. Till date no selective MMP-9 inhibitors passed the clinical trials. In this review the structure, activation, function and inhibitors of MMP-9 are mainly focused. Some highly active and/or selective MMP-9 inhibitors have been discussed which may be helpful to explore the structural significance of MMP-9 inhibitors. This study may be useful to design new potent and selective MMP-9 inhibitors against cancer in future.
Collapse
Affiliation(s)
- Subha Mondal
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
10
|
Structural exploration of arylsulfonamide-based ADAM17 inhibitors through validated comparative multi-QSAR modelling studies. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Ponikvar-Svet M, Zeiger DN, Liebman JF. Interplay of thermochemistry and Structural Chemistry: the journal (volume 29, 2018, issues 1–2) and the discipline. Struct Chem 2019. [DOI: 10.1007/s11224-019-01344-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Yang Y, Li Y, Zhou W, Chen Y, Wu Q, Pan Y, Zhang S, Yang L. Exploring the structural determinants of novel xanthine derivatives as A 2B adenosine receptor antagonists: a computational study. J Biomol Struct Dyn 2018; 37:3467-3481. [PMID: 30175951 DOI: 10.1080/07391102.2018.1517612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adenosine is a ubiquitous endogenous nucleoside that controls numerous physiological functions via interacting with its specific G-coupled receptors. Activation of adenosine receptors (AdoRs), particularly A2B AdoRs promotes the release of inflammatory cytokines; reduces vascular permeabilization and induces angiogenesis, thereby making A2B AdoR becomes a potentially pharmacological target for drug development. Presently, for investigating the structural determinants of 164 xanthine derivatives as A2B AdoR antagonists, we performed an in silico study integrating with 3D-QSAR, docking and molecular dynamics (MD) simulation. The obtained optimal model shows strong predictability (Q2 = 0.647, R2ncv = 0.955, and R2pred = 0.848). Additionally, to explore the binding mode of the ligand with A2B AdoR and to understand their binding mechanism, docking analysis, MD simulations (20 ns), and the calculation of binding free energy were also carried out. Finally, the structural determinants of these xanthine derivatives were identified and a total of 20 novel A2B AdoR antagonists with improved potency were computationally designed, and their synthetic feasibility and selectivity were also evaluated. The information derived from the present study offers a better appreciation for exploring the interaction mechanism of the ligand with A2B AdoR, which could be helpful for designing novel potent A2B AdoR antagonists. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yinfeng Yang
- a Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Department of Materials Sciences and Chemical Engineering , Dalian University of Technology , Dalian , Liaoning , China
| | - Yan Li
- a Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Department of Materials Sciences and Chemical Engineering , Dalian University of Technology , Dalian , Liaoning , China.,b Key Laboratory of Xinjiang Endemic Phytomedicine Resources , Pharmacy School Shihezi University, Ministry of Education , Shihezi , China
| | - Weiwei Zhou
- b Key Laboratory of Xinjiang Endemic Phytomedicine Resources , Pharmacy School Shihezi University, Ministry of Education , Shihezi , China
| | - Yaorong Chen
- a Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Department of Materials Sciences and Chemical Engineering , Dalian University of Technology , Dalian , Liaoning , China
| | - Qian Wu
- c Weifang , Microscale Science Institute Weifang University , Shandong , China
| | - Yanqiu Pan
- a Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Department of Materials Sciences and Chemical Engineering , Dalian University of Technology , Dalian , Liaoning , China
| | - Shuwei Zhang
- a Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Department of Materials Sciences and Chemical Engineering , Dalian University of Technology , Dalian , Liaoning , China
| | - Ling Yang
- d Laboratory of Pharmaceutical Resource Discovery , Dalian Institute of Chemical Physics , Graduate School of the Chinese Academy of Sciences , Dalian , Liaoning , China
| |
Collapse
|
13
|
Adhikari N, Amin SA, Trivedi P, Jha T, Ghosh B. HDAC3 is a potential validated target for cancer: An overview on the benzamide-based selective HDAC3 inhibitors through comparative SAR/QSAR/QAAR approaches. Eur J Med Chem 2018; 157:1127-1142. [DOI: 10.1016/j.ejmech.2018.08.081] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
|
14
|
Jha T, Adhikari N, Saha A, Amin SA. Multiple molecular modelling studies on some derivatives and analogues of glutamic acid as matrix metalloproteinase-2 inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2018; 29:43-68. [PMID: 29254380 DOI: 10.1080/1062936x.2017.1406986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Matrix metalloproteinase-2 (MMP-2) is a potential target in anticancer drug discovery due to its association with angiogenesis, metastasis and tumour progression. In this study, 67 glutamic acid derivatives, synthesized and evaluated as MMP-2 inhibitors, were taken into account for multi-QSAR modelling study (regression-based 2D-QSAR, classification-based LDA-QSAR, Bayesian classification QSAR, HQSAR, 3D-QSAR CoMFA and CoMSIA as well as Open3DQSAR). All these QSAR studies were statistically validated individually. Regarding the 3D-QSAR analysis, the Open3DQSAR results were better than CoMFA and CoMSIA, although all these 3D-QSAR models supported each other. The importance of biphenylsulphonyl moiety over phenylacetyl/naphthylacetyl moieties was established due to its association with favourable steric and hydrophobic characters. HQSAR, LDA-QSAR and Bayesian classification QSAR studies also suggested that the biphenylsulphonamido group was better than the phenylacetylcarboxamido function. Additionally, glutamines were proven to be far better inhibitors than isoglutamines. Observations obtained from the current study were revalidated and supported by the earlier reported molecular modelling studies. Depending on these observations, newer glutamic acid-based compounds may be designed further in future for potent MMP-2 inhibitory activity.
Collapse
Affiliation(s)
- T Jha
- a Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry , Department of Pharmaceutical Technology , Jadavpur University , Kolkata , India
| | - N Adhikari
- a Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry , Department of Pharmaceutical Technology , Jadavpur University , Kolkata , India
| | - A Saha
- b Department of Chemical Technology , University of Calcutta , Kolkata , India
| | - S A Amin
- a Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry , Department of Pharmaceutical Technology , Jadavpur University , Kolkata , India
| |
Collapse
|