1
|
Xie Q, Chen A, Gao Z, Gu S, Wei B, Liang R, Zhang F, Zhao Y, Tang J, Pan C, Yu G. Regulating Conformational Locking in Covalent Organic Framework for Selective and Recyclable Photocatalytic Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405550. [PMID: 39240003 DOI: 10.1002/smll.202405550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Indexed: 09/07/2024]
Abstract
The exploration of new properties and functionality of covalent organic frameworks (COFs) rely mostly on the covalent modification of the starting building blocks or linkages. Noncovalent forces that guide the assembly and adhesion of layers to develop two-dimensional (2D) COFs and improve their bulk properties and functionalities, however, are rarely explored. Herein, the "conformational lock" (CL) effect in 2D hydrazine-linked COFs with intralayer F-H interaction is discovered and regulated to stabilize interlayer adhesion and develop a facile strategy to increase their stability, promote selectivity and efficiency in reactive singlet oxygen (1O2)-triggered photocatalytic transformation when acting as photocatalysts. The CL strategy endows the fluorinated COFs with an efficient intersystem crossing process for 1O2 generation and strong interlayer π-π stacking interaction. The 4F-COF with the strongest F-H noncovalent interaction exhibits the highest photocatalytic conversion and selectivity (exceeding 98%) in typical 1O2-dependent transformations, even over 7 continuous photocatalytic cycles. This work demonstrates that promoting intralayer noncovalent interaction in 2D-COFs can impart high photocatalytic activity and stability, and would vigorously inspire their developments in heterogeneous catalysis.
Collapse
Affiliation(s)
- Qiujian Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Anqi Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Zhu Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Shuai Gu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Baosheng Wei
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Rongran Liang
- Texas A&M University, College Station, TX, 77843, USA
| | - Fupeng Zhang
- China Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Juntao Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Chunyue Pan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Guipeng Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
2
|
Ponikvar-Svet M, Zeiger DN, Liebman JF. Interplay of thermochemistry and Structural Chemistry: the journal (volume 29, 2018, issues 5–6) and the discipline. Struct Chem 2019. [DOI: 10.1007/s11224-019-01398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|