Zierkiewicz W, Wysokiński R, Michalczyk M, Scheiner S. Chalcogen bonding of two ligands to hypervalent YF
4 (Y = S, Se, Te, Po).
Phys Chem Chem Phys 2019;
21:20829-20839. [PMID:
31517347 DOI:
10.1039/c9cp04006d]
[Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ability of two NH3 ligands to engage in simultaneous chalcogen bonds to a hypervalent YF4 molecule, with Y = S, Se, Te, Po, is assessed via quantum calculations. The complex can take on one of two different geometries. The cis structure places the two ligands adjacent to one another in a pseudo-octahedral geometry, held there by a pair of σ-hole chalcogen bonds. The bases can also lie nearly opposite one another, in a distorted octahedron containing one π-hole and one strained σ-hole bond. The cis geometry is favored for Y = S, while Te, and Po tend toward the trans structure; they are nearly equally stable for Se. In either case, the binding energy rises rapidly with the size of the Y atom, exceeding 30 kcal mol-1 for PoF4.
Collapse