Cui Y, Sun D, Guo L, Cui B, Wang J, Sun C, Du X. Spatial exposure and oxidative accumulation of reactive hydroxyl groups in starch retrogradation through transglucosidase and hexose oxidase.
Food Chem 2024;
463:141278. [PMID:
39293385 DOI:
10.1016/j.foodchem.2024.141278]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
To investigate the potential of inhibiting starch retrogradation by modifying the functional groups of starch, transglucosidase (TG) was used to facilitate active hydroxyl groups to be exposed through increasing branching degree. Subsequently, hexose oxidase (HOX) advantageously promoted the oxidation of starch chains and increased spatial repulsion of starch backbone. The Fukui Function revealed that the oxygen atoms at the C3 and C4 positions on glucose units had a higher oxidation tendency. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis confirmed that the reactive hydroxyl groups underwent an oxidation process with increasing HOX treatment time. From the crystal structure parameters, the c-axis of native corn starch modified by TG for 16 h and HOX for 48 h (or TGHOX-48) was shortened from 16.92 to 16.32 Å and in the long-term retrogradation, TGHOX-48 exhibited the lowest starch retrogradation rate (0.22).
Collapse