1
|
Tabtimsai C, Watkhaolam S, Palasri S, Rakrai W, Kaewtong C, Wanno B. Ibuprofen adsorption and detection of pristine, Fe-, Ni-, and Pt-doped boron nitride nanotubes: A DFT investigation. J Mol Graph Model 2023; 126:108654. [PMID: 39491861 DOI: 10.1016/j.jmgm.2023.108654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
The main challenge has been focused on ibuprofen drug detection and adsorption of boron nitride nanotube (BNNT) doping with transition metal (TM = Fe, Ni, and Pt) atoms using the density functional theory calculation in gas and water phases. The geometrical structures, adsorption energies, solvation energies, and electronic properties were examined. The optimized geometries show that the ibuprofen molecule oriented itself at different bond distances and angles with respect to BNNT surface. The calculated results display exothermic adsorption processes for all ibuprofen/BNNT and ibuprofen/TM-doped BNNT complexes. Ibuprofen molecule can absorb on the Fe-, Ni-, and Pt-doped BNNTs via a stronger interaction than those of pristine BNNT in both gas and water phases in which the Fe doping on N site of BNNT shows the strongest interaction with ibuprofen molecule. The H (head) site of ibuprofen molecule to BNNT surface shows stronger interaction than M (middle) and T (tail) sites. The short of adsorption distance and the large of charge transfer correspond to the high adsorption strength of TM-doped BNNTs toward ibuprofen molecule. Charge analysis confirms the partial charge transfer occurring from the ibuprofen molecule to the BNNTs. The solvation energies in water solution reveal that the ibuprofen molecule adsorbed on TM-doped BNNTs is more soluble than pristine BNNT. The work functions of BNNTs are reduced by ibuprofen adsorption. A short recovery times and suitable desorption temperatures are observed for the ibuprofen desorption on pristine BNNT and TM-doped BNNT surfaces. After ibuprofen adsorption, the energy levels and energy gaps of Fe-, Ni-, and Pt-doped BNNTs are changed in which Ni doping on B atom of BNNT displays the largest change. The quantum molecular characteristics of BNNT will be changed after ibuprofen adsorption. The orbital distributions are occurred around the ibuprofen molecule and doping site. The alteration in the density of states for TM-doped BNNT is considerably more pronounced compared to the pristine BNNT. Drawing from the achieved outcomes, it can be inferred that when employed for the delivery of ibuprofen in biological media, Fe-, Ni-, and Pt-doped BNNTs exhibits the greater suitability for the adsorption and detection of the ibuprofen molecule compared to pristine BNNT.
Collapse
Affiliation(s)
- Chanukorn Tabtimsai
- Computational Chemistry Center for Nanotechnology and Department of Chemistry, Faculty of Science and Technology, Rajabhat Maha Sarakham University, Muang, Maha Sarakham, 44000, Thailand
| | - Sitthichai Watkhaolam
- Computational Chemistry Center for Nanotechnology and Department of Chemistry, Faculty of Science and Technology, Rajabhat Maha Sarakham University, Muang, Maha Sarakham, 44000, Thailand
| | - Sutasinee Palasri
- Computational Chemistry Center for Nanotechnology and Department of Chemistry, Faculty of Science and Technology, Rajabhat Maha Sarakham University, Muang, Maha Sarakham, 44000, Thailand
| | - Wandee Rakrai
- Computational Chemistry Center for Nanotechnology and Department of Chemistry, Faculty of Science and Technology, Rajabhat Maha Sarakham University, Muang, Maha Sarakham, 44000, Thailand
| | - Chatthai Kaewtong
- Multidisplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry, Faculty of Science, Mahasarakham University, Kantharawichai, Maha Sarakham, 44150, Thailand
| | - Banchob Wanno
- Multidisplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry, Faculty of Science, Mahasarakham University, Kantharawichai, Maha Sarakham, 44150, Thailand; Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Mahasarakham University, Kantharawichai, Maha Sarakham, 44150, Thailand.
| |
Collapse
|
2
|
Nguyen TH, Nguyen TH, Le TTT, Vu Dang H, Nguyen HMT. Interactions between Paracetamol and Formaldehyde: Theoretical Investigation and Topological Analysis. ACS OMEGA 2023; 8:11725-11735. [PMID: 37033805 PMCID: PMC10077466 DOI: 10.1021/acsomega.2c05023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/02/2022] [Indexed: 06/19/2023]
Abstract
In this work, noncovalent interactions including hydrogen bonds, C···C, N···O, and van der Waals forces between paracetamol and formaldehyde were investigated using the second-order perturbation theory MP2 in conjunction with the correlation consistent basis sets (aug-cc-pVDZ and aug-cc-pVTZ). Two molecular conformations of paracetamol were considered. Seven equilibrium geometries of dimers were found from the result of the interactions with formaldehyde for each conformation of paracetamol. Interaction energies of complexes with both ZPE and BSSE corrections range from -7.0 to -21.7 kJ mol-1. Topological parameters (such as electron density, its Laplacian, and local electron energy density at the bond critical points) of the bonds from atoms in molecules theory were analyzed in detail. The natural bond orbital analysis showed that the stability of complexes was controlled by noncovalent interactions including O-H···O, N-H···O, C-H···O, C-H···N, C-H···H-C, C···C, and N···O. The red- and blue-shifted hydrogen bonds could both be observed in these complexes. The properties of these interactions were also further examined in water using a polarized continuum model. In water, the stability of the complex was slightly reduced as compared to that in the gas phase.
Collapse
Affiliation(s)
- Tho Huu Nguyen
- Faculty
of Natural Sciences Pedagogy, Saigon University, 273 An Duong Vuong, Ward 3, District
5, Ho Chi Minh City 700000, Vietnam
| | - Tri Huu Nguyen
- Faculty
of Natural Sciences Pedagogy, Saigon University, 273 An Duong Vuong, Ward 3, District
5, Ho Chi Minh City 700000, Vietnam
| | - Thi Thanh Thuy Le
- Faculty
of Natural Sciences Pedagogy, Saigon University, 273 An Duong Vuong, Ward 3, District
5, Ho Chi Minh City 700000, Vietnam
| | - Hoang Vu Dang
- Department
of Analytical Chemistry and Toxicology, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam
| | - Hue Minh Thi Nguyen
- Faculty
of Chemistry and Center for Computational Science, Hanoi National University of Education, 136 Xuan Thuy Street, Cau Giay, Hanoi 100000, Vietnam
| |
Collapse
|
3
|
Parlak C, Alver Ö. Paracetamol adsorption on C60 fullerene and its derivatives: In silico insights. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
One-step ultra-sensitive immunochromatographic strip authenticating an emergent fraud acetophenetidin in herbal tea. Food Chem Toxicol 2022; 165:113183. [DOI: 10.1016/j.fct.2022.113183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022]
|
5
|
Marvi PK, Amjad-Iranagh S, Halladj R. Molecular Dynamics Assessment of Doxorubicin Adsorption on Surface-Modified Boron Nitride Nanotubes (BNNTs). J Phys Chem B 2021; 125:13168-13180. [PMID: 34813340 DOI: 10.1021/acs.jpcb.1c07052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Loading therapeutic agents on nanocarriers in order to protect them during drug delivery and exclusively targeting damaged tissues has gained substantial significance in biology realms in the past decade. Boron nitride nanotubes have given a new lease on designing nano delivery systems by virtue of their unique properties. The studies are still ongoing to thoroughly identify their chemical characteristics. In this study, we probed into the efficacy of boron nitride nanotubes and the impact of their surface modification by hydroxyl and amine functional groups in interaction with an anticancer drug model, i.e., doxorubicin. Defining the altered electronic properties of the nanotubes as well as the distribution of partial charges were carried out through density functional theory calculations, following the simulation of the drug loading process via molecular dynamics algorithms. The primary outcomes are inferred from systematical energies, van der Waals and electrostatic interactions, radial distribution functions, the number of hydrogen bonds, mean square displacement, diffusion coefficients, and binding free energies. Negative values of van der Waals energies imply a rapid, exothermic adsorption process whereby the contribution of these driving forces is more dominant than electrostatic ones. Ultimately, the values of overall diffusion coefficients of drugs and binding free energies, performed by the MM/PBSA approach, corroborate that the hydroxyl and amine-functionalized nanotubes reinforce the binding strength of the complexes to an approximate extent.
Collapse
Affiliation(s)
- Parham Khoshbakht Marvi
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - Sepideh Amjad-Iranagh
- Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - Rouein Halladj
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran
| |
Collapse
|
6
|
Di Mauro A, Natile MM, Landström A, Concina I, Ferroni M, Privitera V, Impellizzeri G, Epifani M. Visible light photodegradation of dyes and paracetamol by direct sensitization mechanism onto metallic MoO2 nanocrystals. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Rahman H, Hossain MR, Ferdous T. The recent advancement of low-dimensional nanostructured materials for drug delivery and drug sensing application: A brief review. J Mol Liq 2020; 320:114427. [PMID: 33012931 PMCID: PMC7525470 DOI: 10.1016/j.molliq.2020.114427] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 01/07/2023]
Abstract
In this review article, we have presented a detailed analysis of the recent advancement of quantum mechanical calculations in the applications of the low-dimensional nanomaterials (LDNs) into biomedical fields like biosensors and drug delivery systems development. Biosensors play an essential role for many communities, e.g. law enforcing agencies to sense illicit drugs, medical communities to remove overdosed medications from the human and animal body etc. Besides, drug delivery systems are theoretically being proposed for many years and experimentally found to deliver the drug to the targeted sites by reducing the harmful side effects significantly. In current COVID-19 pandemic, biosensors can play significant roles, e.g. to remove experimental drugs during the human trials if they show any unwanted adverse effect etc. where the drug delivery systems can be potentially applied to reduce the side effects. But before proceeding to these noble and expensive translational research works, advanced theoretical calculations can provide the possible outcomes with considerable accuracy. Hence in this review article, we have analyzed how theoretical calculations can be used to investigate LDNs as potential biosensor devices or drug delivery systems. We have also made a very brief discussion on the properties of biosensors or drug delivery systems which should be investigated for the biomedical applications and how to calculate them theoretically. Finally, we have made a detailed analysis of a large number of recently published research works where theoretical calculations were used to propose different LDNs for bio-sensing and drug delivery applications.
Collapse
Affiliation(s)
- Hamidur Rahman
- Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md Rakib Hossain
- Department of Physics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Tahmina Ferdous
- Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|