1
|
Dutra FR, Vasiliu M, Gomez AN, Xia D, Dixon DA. Prediction of Redox Potentials for U, Np, Pu, and Am in Aqueous Solution. J Phys Chem A 2024; 128:5612-5626. [PMID: 38959054 DOI: 10.1021/acs.jpca.4c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The redox properties of the actinides in aqueous solution are important for fuel production/reprocessing and understanding the environmental impact of nuclear waste. The redox potentials for U, Np, Pu, and Am in oxidation states from 0 up to VII (as appropriate) in aqueous solutions have been predicted at the density functional theory level with the B3LYP functional, Stuttgart small core pseudopotential basis sets for the actinides, and explicit (30H2O molecules)/implicit treatment of the aqueous solvent using the self-consistent reaction field COSMO and SMD approaches for the implicit solvation. The predictions of the structural parameters of clusters incorporating first and second solvation shells are consistent with the available experimental data. Our results are typically within 0.2 V of the available experimental data using two explicit solvation shells with an implicit solvent model. The use of the PW91 functional substantially improved the prediction of the Pu(VI/V) redox couple. The redox couples for An(VI/IV) and An(V/IV) which involve the addition of protons and removal of the actinyl oxygens led to slightly larger differences from an experiment. The An(IV/0) and An(III/0) couples were reliably predicted with our approach. Predictions of the unknown An(II/I) redox potentials were negative, consistent with expectations, and predictions for unknown An(VII/VI), An(III/II), and An(II/0) redox couples improve prior estimates.
Collapse
Affiliation(s)
- Felipe R Dutra
- Instituto de Química, Universidade Estadual de Campinas, Barão Geraldo, P.O. Box 6154, Campinas 13083-970, São Paulo, Brazil
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - Amber N Gomez
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - Donna Xia
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
2
|
Lontchi E, Mason MM, Vasiliu M, Dixon DA. Prediction of the structures and heats of formation of MO 2, MO 3, and M 2O 5 for M = V, Nb, Ta, Pa. Phys Chem Chem Phys 2023; 25:8355-8368. [PMID: 36912479 DOI: 10.1039/d3cp00380a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Structures for the mono-, di-, and tri-bridge isomers of M2O5 as well as those for the MO2 and MO3 fragments for M = V, Nb, Ta, and Pa were optimized at the density functional theory (DFT) level. Single point CCSD(T) calculations extrapolated to the complete basis set (CBS) limit at the DFT geometries were used to predict the energetics. The lowest energy dimer isomer was the di-bridge for M = V and Nb and the tri-bridge for M = Ta and Pa. The di-bridge isomers were predicted to be composed of MO2+ and MO3- fragments, whereas the mono- and tri-bridge are two MO2+ fragments linked by an O2-. The heats of formation of M2O5 dimers, as well as MO2 and MO3 neutral and ionic species were predicted using the Feller-Peterson-Dixon (FPD) approach. The heats of formation of the MF5 species were calculated to provide additional benchmarks. Dimerization energies to form the M2O5 dimers are predicted to become more negative going down group 5 and range from -29 to -45 kcal mol-1. The ionization energies (IEs) for VO2 and TaO2 are essentially the same at 8.75 eV whereas the IEs for NbO2 and PaO2 are 8.10 and 6.25 eV, respectively. The predicted adiabatic electron affinities (AEAs) range from 3.75 eV to 4.45 eV for the MO3 species and vertical detachment energies from 4.21 to 4.59 eV for MO3-. The calculated MO bond dissociation energies increase from 143 kcal mol-1 for M = V to ∼170 kcal mol-1 for M = Nb and Ta to ∼200 kcal mol-1 for M = Pa. The M-O bond dissociation energies are all similar ranging from 97 to 107 kcal mol-1. Natural bond analysis provided insights into the types of chemical bonds in terms of their ionic character. Pa2O5 is predicted to behave like an actinyl species dominated by the interactions of approximately linear PaO2+ groups.
Collapse
Affiliation(s)
- Eddy Lontchi
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, AL 35487-0336, USA.
| | - Marcos M Mason
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, AL 35487-0336, USA.
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, AL 35487-0336, USA.
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, AL 35487-0336, USA.
| |
Collapse
|
3
|
Jian T, Vasiliu M, Lee ZR, Zhang Z, Dixon DA, Gibson JK. Dinuclear Complexes of Uranyl, Neptunyl, and Plutonyl: Structures and Oxidation States Revealed by Experiment and Theory. J Phys Chem A 2022; 126:7695-7708. [PMID: 36251495 DOI: 10.1021/acs.jpca.2c06121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dinuclear perchlorate complexes of uranium, neptunium, and plutonium were characterized by reactivity and DFT, with results revealing structures containing pentavalent, hexavalent, and heptavalent actinyls, and actinyl-actinyl interactions (AAIs). Electrospray ionization produced native complexes [(AnO2)2(ClO4)3]- for An:An = U:U, Np:Np, Pu:Pu, and Np:Pu, which are intuitively formulated as actinyl(V) perchlorates. However, DFT identified lower-energy structures [(AnO2)(AnO3)(ClO4)2(ClO3)]- comprising a perchlorate fragmented to ClO3, actinyl(VI) cation AnVIO22+, and neutral AnO3. For U:U and Np:Np, and Np in Np:Pu, the coordinated AnO3 is calculated as actinyl(VI) with an equatorial oxo, [Oyl═AnVI═Oyl][═Oeq], whereas for Pu:Pu, it is plutonyl(V) oxyl, [Oyl═PuV═Oyl][-Oeq•]. The implied lower stability of PuVI versus NpVI indicates weaker Pu═Oeq versus Np═Oeq bonding. Adsorption of O2 by the U:U complex suggests oxidation of UV to UVI, corroborating the assignment of perchlorate [(AnVO2)2(ClO4)3]-. DFT predicts the O2 adducts are [(AnVIO2)(O2)(AnVIO2)(ClO4)3]- with actinyls oxidized from +V to +VI by bridging peroxide, O22-. In accordance with reactivity, O2- addition is computed as substantially exothermic for U:U and least favorable for Pu:Pu. Collision-induced dissociation of native complexes eliminated ClO2 to yield [(AnO2)(O)2(AnO2)(ClO4)2]-, in which fragmented O atoms bridge as oxyl O-• and oxo O2- to yield uranyl(VI) and plutonyl(VI), or as oxos O2- to yield neptunyl(VII), [Oyl═NpVII═Oyl]3+.
Collapse
Affiliation(s)
- Tian Jian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Zachary R Lee
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35401, United States.,Department of Biology and Chemistry, Morehead State University, Morehead, Kentucky 40351, United States
| | - Zhicheng Zhang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - John K Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Li F, Qin J, Qiu R, Shuai M, Pu Z. Matrix-Isolation Infrared Spectra and Electronic Structure Calculations for Dinitrogen Complexes with Uranium Trioxide Molecules UO 3(η 1-NN) 1-4. Inorg Chem 2022; 61:11075-11083. [PMID: 35833920 DOI: 10.1021/acs.inorgchem.2c00799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Investigations of the interactions of uranium trioxide (UO3) with other species are expected to provide a new perspective on its reaction and bonding behaviors. Herein, we present a combined matrix-isolation infrared spectroscopy and theoretical study of the geometries, vibrational frequencies, electronic structures, and bonding patterns for a series of dinitrogen (N2) complexes with UO3 moieties UO3(η1-NN)1-4. The complexes are prepared by reactions of laser-ablated uranium atoms with O2/N2 mixtures or laser-ablated UO3 molecules with N2 in solid argon. UO3(η1-NN)1-4 are classified as "nonclassical" metal-N2 complexes with increased Δν(N2) values according to the experimental observations and the computed blue-shifts of N-N stretching frequencies and N-N bond length contractions. Electronic structure analysis suggests that UO3(η1-NN)1-4 are σ-only complexes with a total lack of π-back-donation. The energy decomposition analysis combined with natural orbitals for chemical valence calculations reveal that the bonding between the UO3 moiety and N2 ligands in UO3(η1-NN)1-4 arises from the roughly equal electrostatic attractions and orbital mixings. The inspection of orbital interactions from pairwise contributions indicates that the strongest orbital stabilization comes from the σ-donations of the 4σ*- and 5σ-based ligand molecular orbitals (MOs) into the hybrid 7s/6dx2-y2 MO of the U center. The electron polarization induced by electrostatic effects in the Ninner ← Nouter direction provides complementary contributions to the orbital stabilization in UO3(η1-NN)1-4. In addition, the reactions of UO3 with N2 ligands and the origination of the nonclassical behavior in UO3(η1-NN)1-4 are discussed.
Collapse
Affiliation(s)
- Fang Li
- School of Material Science and Engineering, Southwest University of Science and Technology, 59 Middle Section of Qinglong Road, Mianyang 621010, P. R. China
| | - Jianwei Qin
- Institute of Materials, China Academy of Engineering Physics, Mailbox No. 9-21, Huafengxincun, Jiangyou 621908, Sichuan, P. R. China.,Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China
| | - Ruizhi Qiu
- Institute of Materials, China Academy of Engineering Physics, Mailbox No. 9-21, Huafengxincun, Jiangyou 621908, Sichuan, P. R. China.,Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China
| | - Maobing Shuai
- Institute of Materials, China Academy of Engineering Physics, Mailbox No. 9-21, Huafengxincun, Jiangyou 621908, Sichuan, P. R. China
| | - Zhen Pu
- Institute of Materials, China Academy of Engineering Physics, Mailbox No. 9-21, Huafengxincun, Jiangyou 621908, Sichuan, P. R. China
| |
Collapse
|
5
|
Xu ZF, Zhang WJ, Zhang P, Hu SX. Unprecedented neptunyl(V) cation-directed structural variations in Np 2O x compounds. NANOSCALE 2021; 13:15590-15597. [PMID: 34528990 DOI: 10.1039/d1nr03408a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Studies on transuranic oxides provide a particularly valuable insight into chemical bonding in actinide compounds, in which subtle differences between metal ions and oxygen atoms are of fundamental importance for the stability of these compounds as well as their existence. In the case of neptunium, it is still mainly limited to specific Np oxide compounds without periodicity in the formation of stable structures or different oxidation states. Here, we report a systematic global minimum search of Np2Ox (x = 1-7) clusters and the computational study of their electronic structures and chemical bonding. These studies suggest that Np(V) ion could play the structure-directing role, and thus the mixed-valent Np(III/V) in Np2O4 is predicted accessible. In comparison with lower oxidation state Np analogues, significant 5f-orbital covalent interactions with Np(V)O bonding are observed, which shows that these model neptunium oxides can provide new understandings into the behavior of 5f-electrons in chemical bonding and structural design.
Collapse
Affiliation(s)
- Zhong-Fei Xu
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing Computational Science Research Center, Beijing, 100193, China
| | - Wen-Jing Zhang
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing Computational Science Research Center, Beijing, 100193, China
| | - Ping Zhang
- Beijing Computational Science Research Center, Beijing, 100193, China
| | - Shu-Xian Hu
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing Computational Science Research Center, Beijing, 100193, China
| |
Collapse
|
6
|
Lontchi EM, Vasiliu M, Tatina LM, Caccamo AC, Gomez AN, Gibson JK, Dixon DA. Hydrolysis of Small Oxo/Hydroxo Molecules Containing High Oxidation State Actinides (Th, Pa, U, Np, Pu): A Computational Study. J Phys Chem A 2021; 125:6158-6170. [PMID: 34240864 DOI: 10.1021/acs.jpca.1c04048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The energetics of hydrolysis reactions for high oxidation states of oxo/hydroxo monomeric actinide species (ThIVO2, PaIVO2, UIVO2, PaVO2(OH), UVO2(OH), UVIO3, NpVIO3, NpVIIO3(OH), and PuVIIO3(OH)) were calculated at the CCSD(T) level. The first step is the formation of a Lewis acid/base adduct with H2O (hydration), followed by a proton transfer to form a dihydroxide molecule (hydrolysis); this process is repeated until all oxo groups are hydrolyzed. The physisorption (hydration) for each H2O addition was predicted to be exothermic, ca. -20 kcal/mol. The hydrolysis products are preferred energetically over the hydration products for the +IV and +V oxidation states. The compounds with AnVI are a turning point in terms of favoring hydration over hydrolysis. For AnVIIO3(OH), hydration products are preferred, and only two waters can bind; the complete hydrolysis process is now endothermic, and the oxidation state for the An in An(OH)7 is +VI with two OH groups each having one-half an electron. The natural bond order charges and the reaction energies provide insights into the nature of the hydrolysis/hydration processes. The actinide charges and bond ionicity generally decrease across the period. The ionic character decreases as the oxidation state and coordination number increase so that covalency increases moving to the right in the actinide period.
Collapse
Affiliation(s)
- Eddy M Lontchi
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - Lauren M Tatina
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - Alyssa C Caccamo
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - Amber N Gomez
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - John K Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|