1
|
Toropova AP, Meneses J, Alfaro-Moreno E, Toropov AA. The system of self-consistent models based on quasi-SMILES as a tool to predict the potential of nano-inhibitors of human lung carcinoma cell line A549 for different experimental conditions. Drug Chem Toxicol 2024; 47:306-313. [PMID: 36744523 DOI: 10.1080/01480545.2023.2174986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 02/07/2023]
Abstract
The different features of the impact of nanoparticles on cells, such as the structure of the core, presence/absence of doping, quality of surface, diameter, and dose, were used to define quasi-SMILES, a line of symbols encoded the above physicochemical features of the impact of nanoparticles. The correlation weight for each code in the quasi-SMILES has been calculated by the Monte Carlo method. The descriptor, which is the sum of the correlation weights, is the basis for a one-variable model of the biological activity of nano-inhibitors of human lung carcinoma cell line A549. The system of models obtained by the above scheme was checked on the self-consistence, i.e., reproducing the statistical quality of these models observed for different distributions of available nanomaterials into the training and validation sets. The computational experiments confirm the excellent potential of the approach as a tool to predict the impact of nanomaterials under different experimental conditions. In conclusion, our model is a self-consistent model system that provides a user to assess the reliability of the statistical quality of the used approach.
Collapse
Affiliation(s)
- Alla P Toropova
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - João Meneses
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | | | - Andrey A Toropov
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| |
Collapse
|
2
|
Toropova AP, Toropov AA. Quasi-SMILES as a basis to build up models of endpoints for nanomaterials. ENVIRONMENTAL TECHNOLOGY 2023; 44:4460-4467. [PMID: 35748421 DOI: 10.1080/09593330.2022.2093655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Simplified molecular input-line entry system (SMILES) is a format for representing of the molecular structure. Quasi-SMILES is an extended format for representing molecular structure data and some eclectic data, which in principle could be applied to improve a model's predictive potential. Nano-quantitative structure-property relationships (nano-QSPRs) for energy gap (Eg, eV) of the metals oxide nanoparticles based on the quasi-SMILES give a predictive model for Eg, characterized by the following statistical quality for external validation set n = 22, R2 = 0.83, RMSE = 0.267.
Collapse
Affiliation(s)
- Alla P Toropova
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Andrey A Toropov
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| |
Collapse
|
3
|
Toropov AA, Toropova AP, Roncaglioni A, Benfenati E, Leszczynska D, Leszczynski J. The System of Self-Consistent Models: The Case of Henry's Law Constants. Molecules 2023; 28:7231. [PMID: 37894710 PMCID: PMC10609047 DOI: 10.3390/molecules28207231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Data on Henry's law constants make it possible to systematize geochemical conditions affecting atmosphere status and consequently triggering climate changes. The constants of Henry's law are desired for assessing the processes related to atmospheric contaminations caused by pollutants. The most important are those that are capable of long-term movements over long distances. This ability is closely related to the values of Henry's law constants. Chemical changes in gaseous mixtures affect the fate of atmospheric pollutants and ecology, climate, and human health. Since the number of organic compounds present in the atmosphere is extremely large, it is desirable to develop models suitable for predictions for the large pool of organic molecules that may be present in the atmosphere. Here, we report the development of such a model for Henry's law constants predictions of 29,439 compounds using the CORAL software (2023). The statistical quality of the model is characterized by the value of the coefficient of determination for the training and validation sets of about 0.81 (on average).
Collapse
Affiliation(s)
- Andrey A. Toropov
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (A.A.T.); (A.R.); (E.B.)
| | - Alla P. Toropova
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (A.A.T.); (A.R.); (E.B.)
| | - Alessandra Roncaglioni
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (A.A.T.); (A.R.); (E.B.)
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (A.A.T.); (A.R.); (E.B.)
| | - Danuta Leszczynska
- Interdisciplinary Nanotoxicity Center, Department of Civil and Environmental Engineering, Jackson State University, 1325 Lynch Street, Jackson, MS 39217-0510, USA;
| | - Jerzy Leszczynski
- Interdisciplinary Nanotoxicity Center, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, 1400 J. R. Lynch Street, Jackson, MS 39217-0510, USA;
| |
Collapse
|
4
|
Toropov AA, Toropova AP, Roncaglioni A, Benfenati E. The system of self-consistent models for pesticide toxicity to Daphnia magna. Toxicol Mech Methods 2023; 33:578-583. [PMID: 36992571 DOI: 10.1080/15376516.2023.2197487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
Quantitative structure-property/activity relationships (QSPRs/QSARs) are a tool of modern theoretical and computational chemistry. The self-consistent model system is both a method to build up a group of QSPR/QSAR models and an approach to checking the reliability of these models. Here, a group of models of pesticide toxicity toward Daphnia magna for different distributions into training and test sub-sets is compared. This comparison is the basis for formulating the system of self-consistent models. The so-called index of the ideality of correlation (IIC) has been used to improve the above models' predictive potential of pesticide toxicity. The predictive potential of the suggested models should be classified as high since the average value of the determination coefficient for the validation sets is 0.841, and the dispersion is 0.033 (on all five models). The best model (number 4) has an average determination coefficient of 0.89 for the external validation sets (related to all five splits).
Collapse
Affiliation(s)
- Andrey A Toropov
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Alla P Toropova
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Alessandra Roncaglioni
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Emilio Benfenati
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| |
Collapse
|
5
|
Toropov AA, Toropova AP, Leszczynska D, Leszczynski J. Development of Self-Consistency Models of Anticancer Activity of Nanoparticles under Different Experimental Conditions Using Quasi-SMILES Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1852. [PMID: 37368282 DOI: 10.3390/nano13121852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Algorithms of the simulation of the anticancer activity of nanoparticles under different experimental conditions toward cell lines A549 (lung cancer), THP-1 (leukemia), MCF-7 (breast cancer), Caco2 (cervical cancer), and hepG2 (hepatoma) have been developed using the quasi-SMILES approach. This approach is suggested as an efficient tool for the quantitative structure-property-activity relationships (QSPRs/QSARs) analysis of the above nanoparticles. The studied model is built up using the so-called vector of ideality of correlation. The components of this vector include the index of ideality of correlation (IIC) and the correlation intensity index (CII). The epistemological component of this study is the development of methods of registration, storage, and effective use of experimental situations that are comfortable for the researcher-experimentalist in order to be able to control the physicochemical and biochemical consequences of using nanomaterials. The proposed approach differs from the traditional models based on QSPR/QSAR in the following respects: (i) not molecules but experimental situations available in a database are considered; in other words, an answer is offered to the question of how to change the plot of the experiment in order to achieve the desired values of the endpoint being studied; and (ii) the user has the ability to select a list of controlled conditions available in the database that can affect the endpoint and evaluate how significant the influence of the selected controlled experimental conditions is.
Collapse
Affiliation(s)
- Andrey A Toropov
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Alla P Toropova
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Danuta Leszczynska
- Interdisciplinary Nanotoxicity Center, Department of Civil and Environmental Engineering, Jackson State University, 1325 Lynch Street, Jackson, MS 39217-0510, USA
| | - Jerzy Leszczynski
- Interdisciplinary Nanotoxicity Center, Department of Chemistry, Physics and Atmospheric Sciences, Jackson, MS 39217-0510, USA
| |
Collapse
|
6
|
Toropova AP, Toropov AA, Fjodorova N. In Silico Simulation of Impacts of Metal Nano-Oxides on Cell Viability in THP-1 Cells Based on the Correlation Weights of the Fragments of Molecular Structures and Codes of Experimental Conditions Represented by Means of Quasi-SMILES. Int J Mol Sci 2023; 24:ijms24032058. [PMID: 36768396 PMCID: PMC9917241 DOI: 10.3390/ijms24032058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
A simulation of the effect of metal nano-oxides at various concentrations (25, 50, 100, and 200 milligrams per millilitre) on cell viability in THP-1 cells (%) based on data on the molecular structure of the oxide and its concentration is proposed. We used a simplified molecular input-line entry system (SMILES) to represent the molecular structure. So-called quasi-SMILES extends usual SMILES with special codes for experimental conditions (concentration). The approach based on building up models using quasi-SMILES is self-consistent, i.e., the predictive potential of the model group obtained by random splits into training and validation sets is stable. The Monte Carlo method was used as a basis for building up the above groups of models. The CORAL software was applied to building the Monte Carlo calculations. The average determination coefficient for the five different validation sets was R2 = 0.806 ± 0.061.
Collapse
Affiliation(s)
- Alla P. Toropova
- Laboratory of Environmental Chemistry and Toxicology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, 20156 Milano, Italy
- Correspondence: ; Tel.: +39-02-3901-4595
| | - Andrey A. Toropov
- Laboratory of Environmental Chemistry and Toxicology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, 20156 Milano, Italy
| | | |
Collapse
|
7
|
Lotfi S, Ahmadi S, Kumar P. Ecotoxicological prediction of organic chemicals toward Pseudokirchneriella subcapitata by Monte Carlo approach. RSC Adv 2022; 12:24988-24997. [PMID: 36199875 PMCID: PMC9434604 DOI: 10.1039/d2ra03936b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
In the ecotoxicological risk assessment, acute toxicity is one of the most significant criteria. Green alga Pseudokirchneriella subcapitata has been used for ecotoxicological studies to assess the toxicity of different toxic chemicals in freshwater. Quantitative Structure Activity Relationships (QSAR) are mathematical models to relate chemical structure and activity/physicochemical properties of chemicals quantitatively. Herein, Quantitative Structure Toxicity Relationship (QSTR) modeling is applied to assess the toxicity of a data set of 334 different chemicals on Pseudokirchneriella subcapitata, in terms of EC10 and EC50 values. The QSTR models are established using CORAL software by utilizing the target function (TF2) with the index of ideality of correlation (IIC). A hybrid optimal descriptor computed from SMILES and molecular hydrogen-suppressed graphs (HSG) is employed to construct QSTR models. The results of various statistical parameters of the QSTR model developed for pEC10 and pEC50 range from excellent to good and are in line with the standard parameters. The models prepared with IIC for Split 3 are chosen as the best model for both endpoints (pEC10 and pEC50). The numerical value of the determination coefficient of the validation set of split 3 for the endpoint pEC10 is 0.7849 and for the endpoint pEC50, it is 0.8150. The structural fractions accountable for the toxicity of chemicals are also extracted. The hydrophilic attributes like 1…n…(… and S…(…[double bond, length as m-dash]… exert positive contributions to controlling the aquatic toxicity and reducing algal toxicity, whereas attributes such as c…c…c…, C…C…C… enhance lipophilicity of the molecules and consequently enhance algal toxicity.
Collapse
Affiliation(s)
- Shahram Lotfi
- Department of Chemistry, Payame Noor University (PNU) 19395-4697 Tehran Iran
| | - Shahin Ahmadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra Haryana 136119 India
| |
Collapse
|
8
|
|
9
|
Ahmadi S, Lotfi S, Afshari S, Kumar P, Ghasemi E. CORAL: Monte Carlo based global QSAR modelling of Bruton tyrosine kinase inhibitors using hybrid descriptors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:1013-1031. [PMID: 34875951 DOI: 10.1080/1062936x.2021.2003429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Global QSAR modelling was performed to predict the pIC50 values of 233 diverse heterocyclic compounds as BTK inhibitors with the Monte Carlo algorithm of CORAL software using the DCW hybrid descriptors extracted from SMILES notations of molecules. The dataset of 233 BTK inhibitors was randomly split into training, invisible training, calibration and validation sets. The index of ideality of correlation was also applied to build and judge the predictability of the QSAR models. Eight global QSAR models based on the hybrid optimal descriptor using two target functions, i.e. TF1 (WIIC = 0) and TF2 (WIIC = 0.2) have been constructed. The statistical parameters of QSAR models computed by TF2 are more reliable and robust and were used to predict the pIC50 values. The model constructed for split 4 via TF2 is regarded as the best model and the numerical values of r2Train, r2Valid, Q2Train and Q2Valid are equal to 0.7981, 0.7429, 0.7898 and 0.6784, respectively. By internal and external validation techniques, the predictability and reliability of the designed models have been assessed. The structural attributes responsible for the increase and decrease of pIC50 of BTK inhibitors were also identified.
Collapse
Affiliation(s)
- S Ahmadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - S Lotfi
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | - S Afshari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - P Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - E Ghasemi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
Ahmadi S, Lotfi S, Kumar P. Quantitative structure-toxicity relationship models for predication of toxicity of ionic liquids towards Leukemia rat cell line IPC-81 based on index of ideality of correlation. Toxicol Mech Methods 2021; 32:302-312. [PMID: 34724871 DOI: 10.1080/15376516.2021.2000686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The application of ion liquids (ILs) as green solvents has attracted the attention of the scientific community. However, ILs may play the role of toxins. Even though ionic liquids may assist to minimise air pollution, but their discharge into aquatic ecosystems might result in significant water pollution due to their potential toxicity and inaccessibility to biodegradation. Recently, more attention has been paid to the toxicity of ILs on plants, bacteria, and humans. Here, a quantitative structure-toxicity relationship study (QSTR) based on the Monte Carlo method of CORAL software has been applied to estimate the logarithm of the half-maximal effective concentration of toxicity of ILs against leukemia rat cell line IPC-81 (logEC50). A hybrid optimal descriptor is used to build QSTR models for a large set of 304 diverse ILs including ammonium, imidazolium, morpholinium, phosphonium, piperidinium, pyridinium, pyrrolidinium, quinolinium, sulfonium, and protic ILs. The SMILES notations of Ils are utilized to compute the descriptor correlation weight (DCW). Four splits are made from the whole dataset and each split is randomly divided into four sets (training subsets and validation set). The index of ideality of correlation (IIC) is applied to evaluate the authenticity and robustness of the QSTR models. A QSTR model with statistical parameters R2=0.85, CCC =0.92, Q2=0.84, and MAE =0.25 for the validation set of the best split is considered as a prime model. The outliers and promoters of increase/decrease of logEC50 are extracted and the mechanistic interpretation of effective descriptors for the model is also offered.HighlightsGlobal SMILES-based QSAR model was developed to predict the toxicity of ILs.The CORAL software is used to model the ILs toxicity on IPC-81 leukemia rat cell lineIIC is tested as a criterion of predictive potential.The toxicological effects of ILs are discussed based on the proposed model.
Collapse
Affiliation(s)
- Shahin Ahmadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran medical sciences, Islamic Azad University, Tehran, Iran
| | - Shahram Lotfi
- Department of Chemistry, Payame Noor University (PNU), 19395-4697 Tehran, Iran
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| |
Collapse
|