1
|
New Ferrocene-Based Metalloligand with Two Triazole Carboxamide Pendant Arms and Its Iron(II) Complex: Synthesis, Crystal Structure, 57Fe Mössbauer Spectroscopy, Magnetic Properties and Theoretical Calculations. INORGANICS 2022. [DOI: 10.3390/inorganics10110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The new ferrocene-based metalloligand bis (N-4-[3,5-di-(2-pyridyl)-1,2,4-triazoyl])ferrocene carboxamide (L) was prepared through derivatization of 1,1′-ferrocenedicarboxylic acid with 4-amino-3,5-di(pyridyl)-4H-1,2,4-triazole. The composition and purity of L in the solid state was determined with elemental analysis, FT-IR spectroscopy, and its crystal structure with single-crystal X-ray analysis, which revealed that the substituted cyclopentadienyl rings adopt the antiperiplanar conformation and the crystal structure of L is stabilized by O–H···N and N–H···O hydrogen bonds. The molecular properties of L in solution were investigated with NMR and UV-VIS spectroscopies, and cyclic voltammetry disclosed irreversible redox behavior providing one oxidation peak at E1/2 = 1.133 V vs. SHE. Furthermore, the polymeric FeII complex {Fe(L)(C(CN)3)2}n (1) was prepared and characterized with elemental analysis, FT-IR spectroscopy, 57Fe Mössbauer spectroscopy, and magnetic measurements. The last two methods confirmed that a mixture of low- and high-spin species is present in 1; however, the spin crossover properties were absent. The presented study was also supported by theoretical calculations at the DFT/TD-DFT level of theory using TPSS and TPSSh functionals.
Collapse
|
2
|
Biegański P, Kovalski E, Israel N, Dmitrieva E, Trzybiński D, Woźniak K, Vrček V, Godel M, Riganti C, Kopecka J, Lang H, Kowalski K. Electronic Coupling in 1,2,3-Triazole Bridged Ferrocenes and Its Impact on Reactive Oxygen Species Generation and Deleterious Activity in Cancer Cells. Inorg Chem 2022; 61:9650-9666. [PMID: 35699521 PMCID: PMC9490837 DOI: 10.1021/acs.inorgchem.2c01110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Mixed-valence (MV)
binuclear ferrocenyl compounds have long been
studied as models for testing theories of electron transfer and in
attempts to design molecular-scale electronic devices (e.g., molecular wires). In contrary to that, far less attention has
been paid to MV binuclear ferrocenes as anticancer agents. Herein,
we discuss the synthesis of six 1,2,3-triazole ferrocenyl compounds
for combined (spectro)electrochemical, electron paramagnetic resonance
(EPR), computational, and anticancer activity studies. Our synthetic
approach was based on the copper-catalyzed 1,3-dipolar azide–alkyne
cycloaddition reaction and enabled us to obtain in one step compounds
bearing either one, two, or three ferrocenyl entities linked to the
common 1,2,3-triazole core. Thus, two series of complexes were obtained,
which pertain to derivatives of 3′-azido-3′-deoxythymidine
(AZT) and 3-azidopropionylferrocene, respectively. Based on the experimental
and theoretical data, the two mono-oxidized species corresponding
to binuclear AZT and trinuclear 3-azidopropionylferrocene complexes
have been categorized as class II mixed-valence according to the classification
proposed by Robin and Day. Of importance is the observation that these
two compounds are more active against human A549 and H1975 non-small-cell
lung cancer cells than their congeners, which do not show MV characteristics.
Moreover, the anticancer activity of MV species competes or surpasses,
dependent on the cell line, the activity of reference anticancer drugs
such as cisplatin, tamoxifen, and 5-fluorouracil. The most active
from the entire series of compounds was the binuclear thymidine derivative
with the lowest IC50 value of 5 ± 2 μM against
lung H1975 cancer cells. The major mechanism of antiproliferative
activity for the investigated MV compounds is based on reactive oxygen
species generation in cancer cells. This hypothesis was substantiated
by EPR spin-trapping experiments and the observation of decreased
anticancer activity in the presence of N-acetyl cysteine
(NAC) free-radical scavenger. The
1,2,3-triazole bridged bi- and triferrocenyl compounds
were prepared via a “click” reaction.
Their corresponding mono-oxidized forms have been categorized as class
II MV species. The biferrocenyl thymidine derivative showed remarkable
anticancer activity against human A549 and H1975 cancer cells and
negligible activity against nonmalignant human BEAS-2B cells. The
anticancer activity mechanism is mainly due to ROS generation, and
it originates from the combination of electronic coupling and the
thymidine moiety, combined all together in one molecular scaffold.
Collapse
Affiliation(s)
- Przemysław Biegański
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland
| | - Eduard Kovalski
- Institut für Chemie, Anorganische Chemie, Fakultät für Naturwissenschaften, Technische Universität Chemnitz, Straße der Nationen 62, D-09107 Chemnitz, Germany
| | - Noel Israel
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, D-01069 Dresden, Germany
| | - Evgenia Dmitrieva
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, D-01069 Dresden, Germany
| | - Damian Trzybiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Krzysztof Woźniak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Valerije Vrček
- Department of Organic Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Martina Godel
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Turin, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Turin, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Turin, Italy
| | - Heinrich Lang
- Institut für Chemie, Anorganische Chemie, Fakultät für Naturwissenschaften, Technische Universität Chemnitz, Straße der Nationen 62, D-09107 Chemnitz, Germany.,MAIN Research Center, Technische Universität Chemnitz, Rosenbergstraße 6, 09126 Chemnitz, Germany
| | - Konrad Kowalski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland
| |
Collapse
|
3
|
Zheng Y, Karimi-Maleh H, Fu L. Evaluation of Antioxidants Using Electrochemical Sensors: A Bibliometric Analysis. SENSORS 2022; 22:s22093238. [PMID: 35590927 PMCID: PMC9103690 DOI: 10.3390/s22093238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023]
Abstract
The imbalance of oxidation and antioxidant systems in the biological system can lead to oxidative stress, which is closely related to the pathogenesis of many diseases. Substances with antioxidant capacity can effectively resist the harmful damage of oxidative stress. How to measure the antioxidant capacity of antioxidants has essential application value in medicine and food. Techniques such as DPPH radical scavenging have been developed to measure antioxidant capacity. However, these traditional analytical techniques take time and require large instruments. It is a more convenient method to evaluate the antioxidant capacity of antioxidants based on their electrochemical oxidation and reduction behaviors. This review summarizes the evaluation of antioxidants using electrochemical sensors by bibliometrics. The development of this topic was described, and the research priorities at different stages were discussed. The topic was investigated in 1999 and became popular after 2010 and has remained popular ever since. A total of 758 papers were published during this period. In the early stages, electrochemical techniques were used only as quantitative techniques and other analytical techniques. Subsequently, cyclic voltammetry was used to directly study the electrochemical behavior of different antioxidants and evaluate antioxidant capacity. With methodological innovations and assistance from materials science, advanced electrochemical sensors have been fabricated to serve this purpose. In this review, we also cluster the keywords to analyze different investigation directions under the topic. Through co-citation of papers, important papers were analyzed as were how they have influenced the topic. In addition, the author’s country distribution and category distribution were also interpreted in detail. In the end, we also proposed perspectives for the future development of this topic.
Collapse
Affiliation(s)
- Yuhong Zheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China;
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu 610056, China;
- Laboratory of Nanotechnology, Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan 9477177870, Iran
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 17011, South Africa
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
- Correspondence:
| |
Collapse
|